首页> 外文OA文献 >Numerical analysis to optimize the heat transfer rate of tube-in-tube helical coil heat exchanger
【2h】

Numerical analysis to optimize the heat transfer rate of tube-in-tube helical coil heat exchanger

机译:优化管内螺旋线圈换热器传热速率的数值分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Working towards the goal of saving energies and to make compact the design for mechanical and chemical devices and plants, the enhancement of heat transfer is one of the key factors in design of heat exchangers. In this process without application of external power we can enhance the heat transfer rate by modifying the design by providing the helical tubes, extended surface or swirl flow devices. Helical tube heat exchanger finds applications in automobile, aerospace, power plant and food industries due to certain advantage such as compact structure, larger heat transfer surface area and improved heat transfer capability. In this paper numerical study of helical coil tube-in-tube heat exchanger is done for different boundary conditions and optimizes condition of heat transfer is found out for different D/d ratio. The turbulent flow model with counter flow heat exchanger is considered for analysis purpose. The effect of D/d ratio on heat transfer rate and pumping power is found out for different boundary conditions. The D/d ratio is varied from 10 to 30 with an interval of 5. Nusselt number, friction factor, pumping power required and LMTD variation of inner fluid with respect to Reynolds number is found out for different D/d ratio. The optimize Reynolds number for maximum heat transfer and minimum power loss is found out by graph intersection methods. With increases in D/d ratio (inverse of curvature ratio) the Nusselt number will decreases and the outer wall boundary condition does not have any significant effect on the inner Nusselt number. The Darcy friction factor decreases with increase in Reynolds number. The Pumping power increases with increase in Reynolds number for all the condition of D/d ratio and for all the boundary conditions. Log mean temperature difference (LMTD) increases at a steady rate with increase in Reynolds number. The optimization point between Nu and f with respect to Re shifts toward the lower Reynolds number with increase in D/d ratio.
机译:为实现节能目标并简化机械和化学设备及装置的设计,提高热传递是热交换器设计的关键因素之一。在此过程中,无需施加外部电源,我们可以通过提供螺旋管,扩展的表面或涡流装置来修改设计,从而提高传热速率。螺旋管式换热器由于具有结构紧凑,传热表面积大和传热能力强等优点而在汽车,航空航天,发电厂和食品工业中得到应用。本文针对不同的边界条件进行了螺旋盘管式换热器的数值研究,找出了不同D / d比的传热条件。分析时考虑了带有逆流热交换器的湍流模型。发现在不同的边界条件下,D / d比对传热速率和泵浦功率的影响。 D / d比在10到30之间变化,间隔为5。发现了不同的D / d比,努塞尔数,摩擦系数,所需的泵浦功率以及内部流体相对于雷诺数的LMTD变化。通过图相交法找出了用于最大传热和最小功率损耗的最佳雷诺数。随着D / d比(曲率比的倒数)的增加,Nusselt数将减少,并且外壁边界条件对内部Nusselt数没有任何显着影响。达西摩擦系数随着雷诺数的增加而减小。对于所有D / d比条件和所有边界条件,泵浦功率都随雷诺数的增加而增加。对数平均温差(LMTD)随着雷诺数的增加而稳定增加。随着D / d比的增加,关于Re的Nu和f之间的优化点移向较低的雷诺数。

著录项

  • 作者

    Kanungo S;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号