首页> 外文OA文献 >Mining Machine Reliability Analysis UsingudEnsembled Support Vector Machine
【2h】

Mining Machine Reliability Analysis UsingudEnsembled Support Vector Machine

机译:使用 ud的采矿机可靠性分析集成支持向量机

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Estimation of reliability plays an important role in performance assessment of any system. Reliability predictions are important for various purposes, like production planning, maintenance planning, reliability assessment, fault detection in manufacturing processes, and risk and liability evaluation. In this study, a Support vector machine (SVM)-based model for forecasting reliability was developed. A genetic algorithm was applied for selecting SVM parameters. The developed model was validated by applying two benchmark data sets. A comparative study reveals that the proposed method performs better than existing methods on benchmark data sets. A case study was conducted on a Dumper’s past time-to-failure data, and cumulative time-to-failure was calculated for reliability modeling. The results demonstrate that the developed model performs well with high accuracy (R2 = 0.99) in the failure prediction of a Dumper. These accurate predictions can help a company in making accurate preventive maintenance and accordingly production and equipment planning can help in increasing production.
机译:可靠性评估在任何系统的性能评估中都起着重要作用。可靠性预测对于各种目的都很重要,例如生产计划,维护计划,可靠性评估,制造过程中的故障检测以及风险和责任评估。在这项研究中,开发了一种基于支持向量机(SVM)的可靠性预测模型。应用遗传算法选择支持向量机参数。通过应用两个基准数据集验证了开发的模型。一项比较研究表明,该方法在基准数据集上的性能优于现有方法。对Dumper的过去故障时间数据进行了案例研究,并计算了累积故障时间以进行可靠性建模。结果表明,开发的模型在自卸车的故障预测中具有较高的精度(R2 = 0.99)。这些准确的预测可以帮助公司进行准确的预防性维护,因此生产和设备计划可以帮助提高产量。

著录项

  • 作者

    Das Anshuman;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号