首页> 外文OA文献 >Analysis and classification of EEG signals using mixture of features and committee neural network
【2h】

Analysis and classification of EEG signals using mixture of features and committee neural network

机译:基于特征混合和委员会神经网络的脑电信号分析和分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Electroencephalography signal is the recording of electrical activity of brain, provides valuable information of the brain function and neurological disorder. this paper proposed committee neural network for classification of EEG signals. Committee neural network consists of different neural network that used multilayer perceptron back propagation algorithm. The number of input node and hidden node selection for artificial neural network remains an important issues, as over parametrized ANN gets trapped in local minima resulting non convergence of ANN structure during training. Redundant features and excessive hiddenudnodes of ANN increases modeling complexity without improving discrimination performance. Therefore optimum design of neural network which intern optimizes the committee neural network is required towards real time detection of EEG signals. The present work attempts to: (i) develop feature extraction algorithm which combines the score generated from autoregressive based feature and wavelet based feature for better classification of EEG signals, (ii) a two-level committee neural network is proposed based on the decision of several neural networks, (iii) select a set of input features that are effective for identification of EEG signal using genetic algorithm, (iv) make certain optimum selection of nodes in the hidden layer using genetic algorithm for each ANN structure of two-level CNN to get effectiveudclassification of EEG signal. It is observed that the performance of proposed technique is better than the earlier established techniques (combined neural network based model and wavelet/ mixture of experts network based approach) and the technique that uses artificial neural network with back propagation multilayer perceptron
机译:脑电图信号是大脑电活动的记录,提供了大脑功能和神经系统疾病的宝贵信息。本文提出了一种委员会神经网络对脑电信号进行分类。委员会神经网络由使用多层感知器反向传播算法的不同神经网络组成。人工神经网络的输入节点数和隐藏节点选择数仍然是一个重要问题,因为过度参数化的ANN陷入局部极小值,从而导致训练期间ANN结构的不收敛。 ANN的冗余特征和过多的隐藏 udnode增加了建模复杂性,而没有提高区分性能。因此,需要对神经网络进行优化设计,以优化委员会神经网络,以便实时检测脑电信号。本工作尝试:(i)开发特征提取算法,该算法将基于自回归特征和基于小波的特征生成的分数相结合,以更好地对EEG信号进行分类;(ii)根据决策者的建议,提出了一个两级委员会神经网络。多个神经网络,(iii)使用遗传算法选择一组对识别EEG信号有效的输入特征,(iv)使用遗传算法对两级CNN的每个ANN结构进行一定的最优选择,以选择隐藏层中的节点对脑电信号进行有效分类。可以看出,所提出的技术的性能优于早期建立的技术(基于神经网络的模型和基于小波/专家网络的混合方法)以及将人工神经网络与反向传播多层感知器结合使用的技术。

著录项

  • 作者

    Jamal Md Ashraf;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号