首页> 外文OA文献 >Removal of Random Valued Impulsive Noise
【2h】

Removal of Random Valued Impulsive Noise

机译:消除随机值脉冲噪声

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In digital Image Processing, removal of noise is a highly demanded area of research.Impulsive noise is common in images which arise at the time of image acquisitionudand or transmission of images. Impulsive noise can be classified into two categories,namely Salt & Pepper Noise (SPN) and Random Valued Impulsive Noise (RVIN). RemovaludSPN is easier as compared to RVIN due to its characteristics. The present work concentrates on removal of RVIN from images.Most of the nonlinear filters used in removal of impulsive noise work in two phases,i.e. detection followed by filtering only the corrupted pixels keeping uncorrupted ones intact. Performance of such filters is dependent on the performance of detection schemes. In this work, thrust has been put to devise an accurate detection scheme and a novel weighted median filtering mechanism.udThe proposed detection scheme utilizes double difference among the pixels in a test window. The difference is computed along four directions namely, horizontal, vertical,and two diagonals to capture the edge direction if any exists. This helps to identify, whether the test pixels under consideration is an edge pixel or a noisy one. Subsequently, the corrupted pixels are passed through in weighted median filter, where more weights are assigned to those pixels which lie in a minimum variance direction among all the four. Extensive simulation has been carried out at various noise conditions and with different standard images. Comparative analysis has been made with existing standard schemes with suitable parameters such as Peak Signal to Noise Ratio (PSNR), fault detection and misses. It has been observed in general that the proposed schemes outperforms its counterparts at low and medium noise conditions and performs at par at high noise conditions with low computational overhead. The low computational requirements have been substantiated with number of operations required for single windowudoperation and overall time required for detection and filtering operation. udIn addition, every detector utilizes a threshold value which is compared with a predefined computed value to decide whether the pixel under consideration is corrupted.udFixed threshold may perform well for one image at a particular noise condition. However, generalization is not possible for a fixed threshold. Hence, requirement for anudadaptive threshold is realized. In the later part of this thesis, we propose an impulsive detection scheme using an adaptive threshold. The adaptive threshold is determinedudfrom an Artificial Neural Network (ANN) using various statistical parameters of noisy image like (µ, σ2, µ4) as inputs. The performance of this scheme is also compared with simulation results.
机译:在数字图像处理中,消除噪声是研究的高度要求领域。脉冲噪声在图像采集反覆或传输图像时出现的图像中很常见。脉冲噪声可分为两类,即盐和胡椒噪声(SPN)和随机值脉冲噪声(RVIN)。由于其特性,与RVIN相比,删除 udSPN更容易。目前的工作集中在从图像上去除RVIN。大多数用于去除脉冲噪声的非线性滤波器分两个阶段起作用,即检测,然后仅过滤损坏的像素,使未损坏的像素保持完整。这种滤波器的性能取决于检测方案的性能。在这项工作中,人们一直在努力设计一种准确的检测方案和一种新颖的加权中值滤波机制。 ud所提出的检测方案利用了测试窗口中像素之间的双重差异。沿四个方向(即水平,垂直和两个对角线)计算差异,以捕获边缘方向(如果存在)。这有助于识别所考虑的测试像素是边缘像素还是噪声像素。随后,将损坏的像素通过加权中值滤波器,其中将更多权重分配给所有四个像素中位于最小方差方向的那些像素。在各种噪声条件下和使用不同的标准图像进行了广泛的仿真。已对现有标准方案进行了比较分析,这些方案具有合适的参数,例如峰值信噪比(PSNR),故障检测和遗漏。通常已经观察到,所提出的方案在低和中噪声条件下胜过其对应方案,并且在高噪声条件下以低计算开销实现了同等性能。较低的计算要求已通过单窗口 udoper所需的操作数量以及检测和过滤操作所需的总时间得以证实。 ud此外,每个检测器都使用一个阈值,该阈值与预定义的计算值进行比较,以确定所考虑的像素是否损坏。但是,对于固定的阈值,不可能一概而论。因此,实现了对自适应阈值的要求。在本文的后半部分,我们提出了一种使用自适应阈值的脉冲检测方案。自适应阈值由人工神经网络(ANN)使用各种嘈杂图像统计参数(例如(μ,σ2,μ4))作为输入来确定。还将该方案的性能与仿真结果进行了比较。

著录项

  • 作者

    Datta Aloke;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号