首页> 外文OA文献 >Compressed Image Quality Measurement
【2h】

Compressed Image Quality Measurement

机译:压缩图像质量测量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The strict requirement of the Nyquist criterion imposes acquiring large amount of data. These data when converted to compressed domain can be represented by very few data points. Due to which most of the samples are ignored. So in any signal processing system efficient use of the sensors, the memory requirements and the computational cost are not optimum. This give rise to increase in power requirements, computational complexity and over use of memory storage, which indirectly increases the cost of the system. Generally the data is stored in compressed domain to reduce the memory requirements. The calculation of the compressed coefficients requires processing time, which is dependent on the number of samples acquired. In most of the Digital systems there is only requirement of estimation of parameter of signal. These parameters are generally computed in the spatial or time domain, which again requires calculation of the inverse of the compressed coefficient. Instead if we were to calculate the parameter in compressed domain itself then the time for inverse conversion would be avoided. To further reduce the time and storage requirement one can make use of CM theory. The theory states that the compressed samples acquired can be used for certain parameter estimation. It also helps in reducing number of computations required, with less error in estimation. One of such parameter to be estimated can be the quality of an image. Quality estimation is required to provide an objective score to an image. SSIM is one of the quality score under consideration of this thesis. The implementation of compressive measurement with SSIM is the main objective of this thesis. This incorporation will help in reducing the computation which will help in developing a real time system for estimation of quality for stream of data like HD video streaming. The thesis provides with statistical results in support of the developed quality estimation metric.
机译:奈奎斯特准则的严格要求强加了获取大量数据的能力。这些数据转换为压缩域时,可以用很少的数据点表示。由于这些原因,大多数样本都被忽略了。因此,在任何有效利用传感器的信号处理系统中,内存需求和计算成本都不是最佳的。这引起功率需求,计算复杂性和存储器存储的过度使用的增加,这间接地增加了系统的成本。通常,数据存储在压缩域中以减少内存需求。压缩系数的计算需要处理时间,该时间取决于采集的样本数量。在大多数数字系统中,仅需要估计信号参数。这些参数通常在空间或时域中计算,这又需要计算压缩系数的倒数。相反,如果我们要在压缩域本身中计算参数,则可以避免进行逆转换的时间。为了进一步减少时间和存储需求,可以使用CM理论。该理论指出,获取的压缩样本可用于某些参数估计。它还有助于减少所需的计算数量,并减少估计误差。待估计的这种参数之一可以是图像的质量。需要质量估计才能为图像提供客观分数。 SSIM是本文考虑的质量得分之一。本文的主要目的是利用SSIM进行压缩测量。这种结合将有助于减少计算量,这将有助于开发一个实时系统来估计像HD视频流这样的数据流的质量。本文提供了统计结果,以支持已开发的质量评估指标。

著录项

  • 作者

    Sawant Sushant Satish;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号