首页> 外文OA文献 >Vibration Analysis of Functionally Graded Carbon Nanotubes Reinforced Composite Shell Structures
【2h】

Vibration Analysis of Functionally Graded Carbon Nanotubes Reinforced Composite Shell Structures

机译:功能梯度碳纳米管增强复合壳结构的振动分析

摘要

Carbon fiber reinforced polymer composites shell structures have been extensively used in the diverse fields of engineering. These structures always possess load carrying capacity due to the special geometrical shapes, and they are also subjected to dynamic loads which cause vibrations. Hence, the study of vibration problems of such shell structures is of great importance. In the recent past, nanostructured materials have gained significant importance from a technological point of view for the wide range of engineering applications that involve high levels of performance and multi functionality. Particularly, carbon nanotubes (CNTs) have shown extraordinary potentials to become the new generation material. The addition of CNT with functionally Graded Materials not only provides enriched mechanical, electrical and thermal properties but that may eliminate the interlaminar stresses which usually exist in the traditional laminated composites due to mismatch of elastic modulus.udThe present work deals with the vibration and damping analysis of two distinct types of structures. First type of structure is functionally graded carbon nanotubes reinforced composite (FG-CNTRC) shell structure which consists of carbon nanotube as reinforcing phase and polymer as matrix phase. Another type is functionally graded carbon nanotubes reinforced hybrid composite (FG-CNTRHC) shell structure which consists of conventional carbon fiber as reinforcing phase and single-walled carbon nanotubes (SWCNTs) based polymer as matrix phase. The material properties of FG-CNTRC shell structure are graded smoothly through the thickness direction of shell according to uniform distribution (UD) and some other functionally graded (FG) distributions (such as FG-Χ, FG-V and FG- ) of the volume fraction of CNTs and the effective material properties are estimated by employing Eshelby–Mori–Tanaka approach considering the randomly oriented agglomerated CNTs. The Eshelby–Mori–Tanaka approach in conjunction with strength of material approach is implemented to obtain the material properties of FG-CNTRHC materials. The material properties of FG-CNTRHCs are assumed to be graded through the thickness direction according to power law distributions of the volume fraction of carbon fibers and fiber orientations. udAfter determining the effective material properties of both structures an eight node shell element considering transverse shear effect according to Mindlin’s hypothesis has been formulated for finite element (FE) modelling and analysis of such functionally graded composite shell structures. The formulation of shell mid-surface in an arbitrary curvilinear coordinate system based on the tensorial notation has been presented. The Rayleigh damping model has been implemented in order to study the effects of carbon nanotubes (CNTs) on damping capacity of such shell structures. Different types of spherical shell panels have been analyzed in order to study the impulse and frequency responses. The influences of CNT volume fraction, CNT distribution, geometry of the shell, CNT agglomeration and material distributions on the dynamic behaviour of FG-CNTRC shell structures and the effects of CNT volume fraction, carbon fiber, geometry of the shell, power law index, CNT agglomeration and material distributions on the vibration damping characteristics of FG-CNTRHC shell structures have also been presented and discussed. udVarious types of FG-CNTRC and FG-CNTRHC shell structures (such as spherical, ellipsoidal, doubly curved and cylindrical) have been analyzed and discussed in order to present the comparative studies in terms of settling time, first resonant frequency and absolute amplitude corresponding to first resonant frequency and considering without and with agglomeration effects of CNTs on vibrations responses of such shell structures are presented. The results show that the CNT agglomeration, CNT distribution and volume fraction of CNT have a significant effect on vibration and damping characteristics of the structures. It is also observed that the FG-CNTRHC shell structures have better dynamic responses compared to FG-CNTRC shell structure.ud
机译:碳纤维增强的聚合物复合材料的壳结构已广泛用于各种工程领域。由于特殊的几何形状,这些结构始终具有承载能力,并且它们还承受引起振动的动态负载。因此,研究这种壳体结构的振动问题非常重要。在最近的过去,从技术的角度来看,纳米结构材料对于涉及高水平性能和多功能性的广泛工程应用已经变得非常重要。特别地,碳纳米管(CNT)已显示出非凡的潜力成为新一代材料。在功能梯度材料中添加CNT不仅可以提供丰富的机械,电气和热性能,而且可以消除由于弹性模量不匹配而在传统层压复合材料中通常存在的层间应力。 ud本工作涉及振动和阻尼分析两种不同类型的结构。第一类结构是功能梯度碳纳米管增强复合材料(FG-CNTRC)壳结构,该结构由碳纳米管作为增强相和聚合物作为基质相。另一种类型是功能梯度碳纳米管增强混合复合材料(FG-CNTRHC)壳结构,该结构由常规碳纤维作为增强相和单壁碳纳米管(SWCNTs)基聚合物作为基质相组成。 FG-CNTRC壳结构的材料特性根据壳的均匀分布(UD)和其他一些功能梯度(FG)分布(例如FG-Χ,FG-V和FG-)在壳的厚度方向上平滑地进行渐变。碳纳米管的体积分数和有效材料性能是通过考虑随机取向的团聚碳纳米管的Eshelby-Mori-Tanaka方法估算的。将Eshelby–Mori–Tanaka方法与材料强度方法结合起来,以获得FG-CNTRHC材料的材料性能。假定FG-CNTRHC的材料性能是根据碳纤维的体积分数和纤维取向的幂律分布在厚度方向上分级的。 ud在确定两种结构的有效材料性能后,根据Mindlin的假设,考虑了横向剪切效应的八节点壳单元已被制成用于有限元(FE)建模和这种功能梯度复合壳结构的分析。提出了基于张量表示法的任意曲线坐标系中壳中表面的表述。为了研究碳纳米管(CNT)对这种壳结构的阻尼能力的影响,已经实施了瑞利阻尼模型。为了研究脉冲和频率响应,已经分析了不同类型的球形壳面板。碳纳米管的体积分数,碳纳米管的分布,壳的几何形状,碳纳米管的团聚和材料分布对FG-CNTRC壳结构的动力学行为的影响以及碳纳米管的体积分数,碳纤维,壳的几何形状,幂律指数,提出并讨论了碳纳米管的团聚和材料分布对FG-CNTRHC壳结构的减振特性的影响。 ud对各种类型的FG-CNTRC和FG-CNTRHC壳结构(例如球形,椭圆形,双曲线和圆柱形)进行了分析和讨论,以便在建立时间,第一共振频率和对应的绝对振幅方面进行比较研究。给出了第一共振频率,并考虑了没有和有碳纳米管的团聚作用对这种壳结构的振动响应。结果表明,碳纳米管的团聚,碳纳米管的分布和体积分数对结构的振动和阻尼特性有显着影响。还可以观察到,与FG-CNTRC壳结构相比,FG-CNTRHC壳结构具有更好的动态响应。

著录项

  • 作者

    Thomas Benedict;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 入库时间 2022-08-20 20:29:13

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号