首页> 外文OA文献 >Molecular Dynamics Studies on the Prediction of Interface Strength of Cu(Metal)-Cu50Zr50(Metallic glass) Metal Matrix Compositesud
【2h】

Molecular Dynamics Studies on the Prediction of Interface Strength of Cu(Metal)-Cu50Zr50(Metallic glass) Metal Matrix Compositesud

机译:Cu(金属)-Cu50Zr50(金属玻璃)金属基复合材料界面强度预测的分子动力学研究 ud

摘要

The aim of this investigation is to predict the interface strength of metal (Cu-matrix)–metallic glass (Cu50Zr50-reinforcement) composites via molecular dynamics (MD) simulations. Simulation box size of 100 Å (x) × 110 Å (y) × 50 Å (z) is used for the investigation. At first Cu–Cu50Zr50 crystalline model is constructed with the bottom layer (Cu) of 50 Å and the top layer of 60 Å (Cu50Zr50) in height along y–direction. Thereafter, Cu50Zr50 metallic glass is obtained by rapid cooling at a cooling rate of 4 × 1012 s-1. The interface model is then equilibrated at 300 K for 500 ps to relieve the stresses. EAM (Embedded Atom Method) potential is used for modelling the interaction between Cu–Cu and Cu–Zr atoms. The fracture strength of Cu–Cu50Zr50 model interface is determined by tensile (mode–I) and shear (mode–II) loading. Periodic boundary conditions are applied along z–direction for shear while along x– and z–directions for tensile tests. A timestep of 0.002 ps is used for all the simulations. Tensile and shear tests are carried out at varying strain rates (108 s-1, 109 s-1 and 1010 s-1) and temperatures (100K, 300 K and 500 K). The interface model is allowed for full separation under both the deformation modes. It is found that tensile as well as shear strength decrease with increase in temperature and increase with strain rate, as expected. Further, the maximum stress in shear is smaller than that in tensile at all strain rates and temperatures. Critical observations of the obtained results on Cu–Cu50Zr50 composites indicate better shear strengths as compared to the results of metal (matrix)-ceramic (reinforcement) composites available in the literature. Hence it can be concluded that metallic glass acts as a better reinforcement material than the popular ceramic reinforcements.
机译:这项研究的目的是通过分子动力学(MD)模拟来预测金属(Cu-基体)–金属玻璃(Cu50Zr50-增强)复合材料的界面强度。用于研究的模拟盒尺寸为100Å(x)×110Å(y)×50Å(z)。首先,构造Cu–Cu50Zr50晶体模型,其沿y方向的高度为50Å的底层(Cu),顶层的高度为60Å的顶层(Cu50Zr50)。之后,通过以4×1012s-1的冷却速率快速冷却而获得Cu50Zr50金属玻璃。然后,将接口模型在300 K下平衡500 ps,以减轻压力。 EAM(嵌入式原子方法)电势用于模拟Cu–Cu和Cu–Zr原子之间的相互作用。 Cu–Cu50Zr50模型界面的断裂强度由拉伸(I型)和剪切(II型)载荷确定。周期性边界条件是沿着z方向施加剪切力,而沿着x和z方向施加拉伸测试力。所有模拟均使用0.002 ps的时间步长。在不同的应变率(108 s-1、109 s-1和1010 s-1)和温度(100K,300 K和500 K)下进行拉伸和剪切测试。界面模型在两种变形模式下都可以完全分离。可以发现,拉伸强度和剪切强度均随温度的升高而降低,并随应变率的升高而升高。此外,在所有应变率和温度下,剪切的最大应力小于拉伸的最大应力。与在文献中可获得的金属(基体)-陶瓷(增强)复合材料的结果相比,对Cu-Cu50Zr50复合材料获得的结果的关键观察表明,其剪切强度更高。因此可以得出结论,与流行的陶瓷增强材料相比,金属玻璃是一种更好的增强材料。

著录项

  • 作者

    Nalla Rakesh;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 入库时间 2022-08-20 20:29:13

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号