首页> 外文OA文献 >Vibration, Buckling and Parametric Resonance Characteristics of Delaminated Composite Plates Subjected to In-plane Periodic Loading
【2h】

Vibration, Buckling and Parametric Resonance Characteristics of Delaminated Composite Plates Subjected to In-plane Periodic Loading

机译:面内周期载荷作用下复合材料层合板的振动,屈曲和参数共振特性

摘要

The composite materials have significant applications over metallic materials in different fields of structural engineering. Structural elements subjected to in-plane periodic forces may lead to parametric or dynamic instability under certain combination of load parameters which caused resonant transverse vibrations. The spectrum of values of parameters causing unstable motion is referred to as the regions of dynamic instability or parametric resonance. Delamination is a very serious concern to composite applications and it arises as a consequence of impact loading, stress concentration near geometrical or material discontinuity or manufacturing defects. The study of dynamic stability itself requires a special investigation of basic problems of vibration and static stability. So the present investigation deals with the study of vibration, static and dynamic stability of delaminated composite plates. However, some studies on static analysis of delaminated composites involving the effects of different parameters on interlaminar shear strength (ILSS) are studied for completeness. The influence of various parameters on the free vibration and static stability (buckling) behavior of delaminated composite plates are investigated both experimentally and numerically. The parametric instability behaviour of delaminated composite plates is examined using finite element method. For numerical analysis, a finite element model is developed with an eight noded two dimensional quadratic isoparametric element having five degrees of freedom per node based on first order shear deformation theory (FSDT). Element elastic stiffness, geometric stiffness and mass matrices are derived using the principle of Stationery potential energy. A simple two dimensional single delamination model proposed earlier for vibration is extended in the present analysis for the vibration, static and dynamic stability analysis of delaminated composite panels under in-plane uniaxial periodic forces by multiple delamination modelling. A general formulation for parametric resonance characteristics of delaminated composite plates under in-plane periodic loading is presented. Experimental investigations are conducted for ILSS, vibration and buckling analysis of delaminated composite plates. Materials used for fabrication of laminates are woven roving glass fiber as reinforcement, epoxy as resin, hardener, polyvinyl alcohol as a releasing agent and Teflon foil for introduction of artificial delamination. Fiber and matrix are used in 50:50 proportion by weight. Material constants are determined from the tensile test as per relevant ASTM standards. The FFT analyzer B&Kñ3560 is used for modal testing of composite plates. To obtain the buckling result, INSTRON 1195 machine of 100 KN capacities is used. There is a very good agreement between numerical result and experimental result in case of natural frequency and critical buckling loads of woven fiber composite plates with delaminations. Both the results revealed that the fundamental natural frequency and critical buckling load of delaminated composite plates decrease with the increase in area of delaminations and fiber orientations. The instability studies showed a good agreement with the results available in the open literature. The onset of instability occurs at lower exciting frequency with the increase in delamination size and static load factor. It is also observed that with the increase in number of layers, aspect ratio and degree of orthotropy of delaminated plates, the dynamic instability occurs at higher excitation frequency. Thus the instability behavior of delaminated plates is influenced by the geometry, material, ply lay-up, ply orientation and size of delamination. This can be used to the advantage of tailoring during the design of delaminated composite structure. This study can be used as a tool for structural health monitoring for identification of delamination, its location and extent of damage in composites and helps in assessment of structural integrity of composite structures.
机译:在结构工程的不同领域中,复合材料在金属材料上具有重要的应用。在一定载荷参数组合下,承受平面内周期性力的结构元件可能会导致参数性或动态不稳定性,从而导致共振横向振动。导致不稳定运动的参数值的频谱称为动态不稳定性或参数共振区域。分层是复合材料应用中非常严重的问题,它是由于冲击载荷,几何或材料不连续性附近的应力集中或制造缺陷引起的。对动力稳定性的研究本身需要对振动和静态稳定性的基本问题进行特殊研究。因此,本研究着眼于分层复合板的振动,静态和动态稳定性的研究。但是,为了完整性,对分层复合材料的静态分析进行了一些研究,其中涉及不同参数对层间剪切强度(ILSS)的影响。通过实验和数值研究了各种参数对分层复合板的自由振动和静态稳定性(屈曲)行为的影响。使用有限元方法检查了分层复合板的参数不稳定性行为。为了进行数值分析,基于一阶剪切变形理论(FSDT),开发了一个具有八个节点的二维二次等参元素的有限元模型,每个节点具有五个自由度。元素弹性刚度,几何刚度和质量矩阵是根据文具势能原理导出的。在本分析中扩展了较早提出的用于振动的简单二维单分层模型,用于通过多层分层建模对分层复合面板在平面单轴周期性力作用下的振动,静态和动态稳定性进行分析。提出了层状复合板在面内周期性载荷下参数共振特性的一般公式。对分层复合板的ILSS,振动和屈曲分析进行了实验研究。用于制造层压板的材料包括:编织的粗纱玻璃纤维作为增强材料,环氧树脂作为树脂,硬化剂,聚乙烯醇作为脱模剂以及用于引入人工分层的聚四氟乙烯箔。纤维和基质以50:50的重量比使用。根据相关的ASTM标准,由拉伸试验确定材料常数。 FFT分析仪B&Kñ3560用于复合板的模态测试。为了获得屈曲结果,使用了100 KN容量的INSTRON 1195机器。在具有分层的机织纤维复合板的固有频率和临界屈曲载荷的情况下,数值结果与实验结果之间有很好的一致性。两项结果均表明,分层复合板的基本固有频率和临界屈曲载荷随分层面积和纤维取向的增加而降低。不稳定性研究表明与公开文献中的结果非常吻合。随着分层尺寸和静态载荷因子的增加,不稳定的发生在较低的激励频率下发生。还可以观察到,随着层数,纵横比和正交板正交性程度的增加,在更高的激发频率下会发生动态不稳定性。因此,分层的板的不稳定性行为受几何形状,材料,层片叠置,层片取向和分层尺寸的影响。在分层复合结构的设计过程中,可以利用这种优势进行剪裁。这项研究可以用作结构健康监测的工具,以识别复合材料中的分层,复合材料的位置和损坏程度,并有助于评估复合结构的结构完整性。

著录项

  • 作者

    Mohanty Jayaram;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号