首页> 外文OA文献 >Deformation Behaviour of C-Mn440 Automobile Steel under Varying Strain Rates.
【2h】

Deformation Behaviour of C-Mn440 Automobile Steel under Varying Strain Rates.

机译:C-Mn440汽车钢在不同应变速率下的变形行为。

摘要

The prime objective of vehicle designers is to produce vehicles with fuel-economy along with the safety standards imposed by the government and stringent consumer demands. It is known that reducing the weight of a vehicle is a straight forward strategy to improve fuel-economy, but it can potentially create safety problems which in turn leads to increased utilization of high strength steel sheets for the automobile body components. C-Mn and DP steels consist of outstanding combination of both strength and ductility. High strain rate experiments are generally used to study the material behaviour when these are subjected to high speed impacts, like crash. The mechanical behaviour of these materials at high strain rates is considerably different from that observed at quasi-static loading because of the strain rate sensitivity of the material. Hence, automotive industries are continuously engaged with designing newer materials for car body applications. In this investigation, many quasi static tensile experiments were carried out at various strain rates on C-Mn 440 steel at ambient temperature. It has been observed that yield and tensile strengths of the material increase drastically while %EL and %RA significantly decrease with the strain rate. The fracture surface reveals dimple morphology with variation of dimple geometry with strain rate; average dimple diameter increases and dimple density decreases with strain rate. The void accumulation (i.e., void density) inside the material increases with the increase in true strain for all the strain rates. At the initial stage of strain, void density increases slowly and at the later stage, void density increases rapidly. The dislocation densities in all deformed specimens have been calculated from X-ray diffraction profile analyses using modified Williamson-Hall method; the results show that dislocation density increases with strain rate.
机译:车辆设计人员的主要目标是生产具有燃油经济性的车辆,以及政府规定的安全标准和严格的消费者要求。众所周知,减轻车辆的重量是改善燃料经济性的直接策略,但是它可能潜在地产生安全问题,从而导致高强度钢板用于车身部件的利用率增加。 C-Mn和DP钢兼具强度和延展性。高应变率实验通常用于研究材料在受到高速撞击(例如碰撞)时的行为。由于材料的应变速率敏感性,这些材料在高应变速率下的机械性能与在准静态负载下观察到的机械性能显着不同。因此,汽车工业一直致力于为车身应用设计更新的材料。在这项研究中,在环境温度下对C-Mn 440钢在各种应变速率下进行了许多准静态拉伸试验。已经观察到,材料的屈服强度和拉伸强度急剧增加,而%EL和%RA随应变率显着降低。断裂面显示出凹痕形态,凹痕几何形状随应变率的变化而变化。平均凹痕直径随应变率增加而凹痕密度降低。对于所有应变率,材料内的空隙累积(即,空隙密度)随着真实应变的增加而增加。在应变的初始阶段,空隙密度缓慢增加,而在后期,空隙密度迅速增加。使用改进的Williamson-Hall方法通过X射线衍射图分析计算出所有变形样品中的位错密度。结果表明,位错密度随应变速率的增加而增加。

著录项

  • 作者

    Mishra A K;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号