首页> 外文OA文献 >Effect of Chemistry and Processing Variables on theudMechanical Properties of Thin-wall Ductile Iron Castings
【2h】

Effect of Chemistry and Processing Variables on theudMechanical Properties of Thin-wall Ductile Iron Castings

机译:化学和加工变量对 ud的影响薄壁球墨铸铁的力学性能

摘要

Cast iron is an alloy of iron containing more than 2% carbon as an alloying element. It has almost no ductility and must be formed by casting. Ductile iron structure is developed from the melt of cast iron. The presence of silicon in higher amount promotes the graphitization, inhibiting carbon to form carbides with carbide forming elements present. The carbon forms into spheres when Ce, Mg are added to the melt of iron with very low sulphur content. Due to this special microstructure containing graphite in nodular form ductile iron possesses ductility & toughness superior to that of any cast iron & steeludstructure resulting in numerous successes in industrial application. Ductile iron castings with 3 and 12 mm thickness with varying chemical composition were cast in furan resin sand molds to identify the effect of sample thickness on microstructural changes and selected mechanical properties. The effect of melt chemistry and molten metal processing variables (i.e., pre-conditioning of the base iron, inoculation type and practice, andudpouring temperature, etc.) on the tensile and impact properties of thin-wall ductile iron castings has been investigated. Comparison of 3 and 12 mm sections within the same casting showed that section size was the main factor influencing tensile properties of ductile irons. While many samples from 3 mm sections showed low elongation values,udlikely caused by a high pearlite content or presence of carbides, many others showed higher elongations and superior strengths well above those required in ASTM A536udgrades. At moderate to high elongations, the thin-wall samples were significantly stronger than samples from identical irons of 12 mm section. A direct comparison between impact values could not be made due to differentudtest specimen sizes, but it is clear that toughness in the two section sizes was roughly equivalent when account was made for the total cross sectional area. The mainuddifference between the Impact properties in the two section sizes lay in the relative insensitivity of the thin-section specimens to either melt chemistry or molten metaludprocessing variables. Of the elements contained in the iron, silicon had the greatest effect on the tensile properties of the thin-wall sections. The same increase in silicon content of the thin-wall sections had little effect on impact toughness. As expected, any processing variable that led to an increase in nodule count (with a corresponding increase in ferrite content) led to greater ductility, lower strength, and improved toughness. Of theudv variables studied the greatest effect was found to be from late inoculation, base iron preconditioning,udand the use of an inoculant containing bismuth and rare earths.
机译:铸铁是一种铁合金,含有超过2%的碳作为合金元素。它几乎没有延展性,必须通过铸造形成。球墨铸铁结构是由铸铁熔体开发而成的。较高含量的硅的存在会促进石墨化,从而抑制碳形成存在碳化物形成元素的碳化物。当Ce,Mg加入到硫含量非常低的铁熔体中时,碳形成球状。由于这种特殊的球状石墨微结构,球墨铸铁的延展性和韧性优于任何铸铁和钢的球墨铸铁组织,因此在工业应用中取得了许多成功。在呋喃树脂砂模中铸造厚度为3毫米和12毫米的化学成分不同的球墨铸铁,以鉴定样品厚度对显微组织变化和所选机械性能的影响。研究了熔融化学和熔融金属加工变量(即基础铁的预处理,接种类型和操作方式以及浇注温度等)对薄壁球墨铸铁铸件的拉伸和冲击性能的影响。 。同一铸件中3和12 mm截面的比较表明,截面尺寸是影响球墨铸铁拉伸性能的主要因素。尽管3mm截面的许多样品显示出较低的伸长率值,这很可能是由于高珠光体含量或碳化物的存在所致,但许多其他样品显示出更高的伸长率和优异的强度,远高于ASTM A536母材的要求。在中等至高伸长率下,薄壁样品明显强于相同的12 mm截面铁杆样品。由于试样的 testtest尺寸不同,因此无法直接比较冲击值,但是很明显,考虑到总横截面面积,两个截面尺寸的韧性大致相等。两个截面尺寸的冲击性能之间的主要差异在于,薄截面试样对熔融化学或熔融金属的不敏感程度。在铁中所含元素中,硅对薄壁部分的拉伸性能影响最大。薄壁部分的硅含量的相同增加对冲击韧性几乎没有影响。不出所料,任何导致结节数增加(铁素体含量相应增加)的加工变量都导致更大的延展性,更低的强度和更高的韧性。在研究的 udv变量中,发现最大的影响来自后期接种,基础铁预处理,使用含铋和稀土的孕育剂。

著录项

  • 作者

    Swain S K;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号