首页> 外文OA文献 >Stochastics based methods enabling testing of grid related algorithms through simulation
【2h】

Stochastics based methods enabling testing of grid related algorithms through simulation

机译:基于随机的方法,可以通过仿真测试与网格相关的算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This dissertation presents stochastics-based methods enabling testing related to three different aspects of the transition towards Smart Grids: the overall increase in sources of uncertainty, the need for studying the effects of higher shares of distributed generation on distribution grids, and the focus on single consumers through concepts such as demand side management. A nonintrusive Polynomial Chaos approach is developed for fast uncertainty analysis. It is shown that by combining Polynomial Chaos and numerical integration, black box use of Polynomial Chaos can be achieved. Additionally, by using a single polynomial basis, the procedure is automated for parameters with arbitrary probability distributions, avoiding adjustments traditionally performed in Polynomial Chaos. It is shown that the results of 10000 Monte Carlo simulations can be achieved by post-processing as little as 6 simulations per random parameter, using deterministic integration points as inputs.In order to allow for robust testing of distribution grid-related methods with several different topologies, an algorithm based on concepts from Graph Theory is designed for generating random distribution grid models. The algorithm separately generates medium voltage grid and low voltage grid models. A geographical reference is used in order to facilitate the assignment of distances and electrical properties, and through these the construction of admittance matrices for further use. The algorithm is validated by comparing the statistics of real grids with those of generated grids.Finally, a framework is developed for the random generation of single load profiles for arbitrary types of consumers, based on standard load profiles as a reference for user activity. The generated profiles represent realistic challenges for simulation and testing thanks to the abrupt consumption behaviour, contrary to the smooth standard load profiles which can only be considered realistic for large numbers of consumers. It is shown through an implementation for households that a large number of generated load profiles behave similarly as the original standard load profile, thereby demonstrating their statistical correctness.
机译:本文提出了基于随机的方法,可以进行与向智能电网过渡的三个不同方面相关的测试:不确定性来源的整体增加,需要研究更高比例的分布式发电对配电网的影响以及对单一电网的关注消费者通过需求侧管理等概念。开发了一种非介入式多项式混沌方法,用于快速不确定性分析。结果表明,将多项式混沌与数值积分相结合,可以实现多项式混沌的黑匣子使用。此外,通过使用单个多项式,该过程可自动处理具有任意概率分布的参数,从而避免了传统上在多项式混沌中执行的调整。结果表明,通过使用确定性积分点作为输入,对每个随机参数进行少至6个模拟后处理,即可获得10000个Monte Carlo模拟的结果。为了能够对几种不同的配电网相关方法进行可靠的测试拓扑中,设计了一种基于图论概念的算法来生成随机分布网格模型。该算法分别生成中压电网模型和低压电网模型。使用地理参考以便于距离和电特性的分配,并通过这些参考来构造导纳矩阵以供进一步使用。通过比较真实网格和生成网格的统计数据来验证该算法。最后,开发了一个框架,用于基于标准负载配置文件作为用户活动的参考,为任意类型的消费者随机生成单个负载配置文件。由于突然的消耗行为,生成的轮廓代表了仿真和测试的实际挑战,而平滑的标准负载轮廓则相反,而平滑的标准负载轮廓只能被大量消费者视为现实。通过针对家庭的实现方式显示,大量生成的负载曲线的行为与原始标准负载曲线相似,从而证明了其统计正确性。

著录项

  • 作者

    Togawa Kanali;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号