首页> 外文OA文献 >Beitrag zum statischen nichtlinearen Erdbebennachweis von unbewehrten Mauerwerksbauten unter Berücksichtigung einer und höherer Modalformen
【2h】

Beitrag zum statischen nichtlinearen Erdbebennachweis von unbewehrten Mauerwerksbauten unter Berücksichtigung einer und höherer Modalformen

机译:考虑到一种或多种模态形式对无筋砌体结构的静态非线性地震检测的贡献

摘要

Construction and verification of masonry buildings under earthquake loading is usually done by determining of all relevant maximum values of forces, displacements and deformations. There are different classes of methods for the prediction of the behaviour of the construction. The main focus of this contribution lies on nonlinear static procedures, which have the advantage that no complex time history calculation is necessary and nonlinear material properties can be inherently considered. This makes them very interesting for practical application. Additionally, they allow for an explicit consideration of nonlinear reserves. Firstly the basic principles of nonlinear static procedures are described in detail and their potentials and limitations are discussed in this contribution. In the centre of interest is the procedure of DIN EN 1998-1 which will become widely used with the introduction of this standard in Germany. The basis for all these procedures is the pushover curve, which depicts the displacement of a control node for increasing horizontal loads considering the nonlinear behaviour of the system. The verification within these procedures is then done by comparing this capacity with the seismic demand taking the energy dissipation into account. Based on a comparison of different common methods with time history calculations, recommendations for a secure application and important input parameters are derived. Irrespective of the verification method, the correct estimation of the dissipated energy always plays a key role. Therefore a suitable inelastic spectrum or damping approach is necessary. Nonlinear static procedures can be subdivided into multimodal procedures and those considering only the fundamental mode. The second class of methods is sufficiently accurate if the fundamental vibration mode is dominating the structural behaviour. However, for certain ground plans or mass distributions, higher modes can have a significant influence on the vibration characteristics of the building. If higher modes have an influence on the structural behaviour under earthquake loading, multimodal procedures lead to a better match between reality and modelling result. An overview of current state-of-the-art multimodal procedures is given and an enhanced concept is developed. This concept, the nonlinear adaptive multimodal interaction analysis (AMI), is based on multiple pushover analyses to determine the maximum inter storey drift. This parameter is especially important for masonry buildings. Within one pushover analysis changes of dynamic parameters and the load distribution are considered which occur due to local failures of the structure. The load distributions are determined from combinations of all relevant modes which ensure that the most unfavourable combination for each storey is always considered. Therefore the concept is always on the safe side. For the applicability of nonlinear static procedures to unreinforced masonry buildings, a structural building model is necessary. On the one hand, the building model must represent the failure modes of single walls (flexural failure, sliding shear failure and diagonal tension shear failure) and on the other hand the structural behaviour. This includes the interaction between walls and slabs and the redistribution of loads. In this contribution a macro element is presented which captures all of these effects. Besides the structural building model, a realistic estimation of the energy dissipation of the entire building is necessary to predict the behaviour under earthquake loading by nonlinear static procedures. Especially for masonry buildings a damping model is necessary which represents the dissipated energy as a function of the failure modes of single walls. Based on experimental results a novel damping approach is presented which is shown to be capable of predicting the hysteretic damping due to the modes of failure and ductility. The presented nonlinear concept in combination with the developed damping model allows to fully exploit the capacity of masonry as a construction material. This makes masonry a viable construction material for various construction tasks again.
机译:通常通过确定力,位移和变形的所有相关最大值来完成在地震荷载下的砖石建筑的建造和验证。有不同类别的方法可用于预测建筑的行为。该贡献的主要焦点在于非线性静态过程,该过程具有以下优点:不需要复杂的时间历史计算,并且可以固有地考虑非线性材料属性。这使它们对于实际应用非常有趣。此外,它们还可以明确考虑非线性储备。首先,详细描述了非线性静态过程的基本原理,并在此贡献中讨论了它们的潜力和局限性。关注的焦点是DIN EN 1998-1的过程,随着该标准在德国的引入,该过程将被广泛使用。所有这些过程的基础是下推曲线,该曲线描述了考虑系统非线性行为而增加水平载荷的控制节点的位移。然后,通过将这种能力与考虑到能量耗散的地震需求进行比较,从而完成这些程序中的验证。基于不同的常用方法与时间历史计算的比较,得出了安全应用的建议和重要的输入参数。不管采用哪种验证方法,对耗散能量的正确估算始终起着关键作用。因此,需要合适的非弹性频谱或阻尼方法。非线性静态过程可以细分为多峰过程和仅考虑基本模式的过程。如果基本振动模式主导结构行为,则第二类方法足够准确。但是,对于某些平面图或质量分布,较高的模式可能会对建筑物的振动特性产生重大影响。如果较高的模态对地震荷载作用下的结构行为有影响,则多模态程序可以使现实与建模结果更好地匹配。概述了当前最新的多模式程序,并开发了增强的概念。非线性自适应多峰相互作用分析(AMI)这一概念是基于多次推覆分析来确定最大层间漂移的。该参数对于砖石建筑尤其重要。在一次推覆分析中,考虑了由于结构的局部故障而发生的动态参数和载荷分布的变化。负荷分布是由所有相关模式的组合确定的,这些模式确保始终考虑每层的最不利组合。因此,该概念始终是安全的。为了使非线性静态程序适用于未加固的砖石建筑,必须使用结构建筑模型。一方面,建筑模型必须表示单壁的破坏模式(挠性破坏,滑动剪切破坏和对角拉伸剪切破坏),另一方面,结构行为也必须如此。这包括墙与板之间的相互作用以及荷载的重新分配。在这一贡献中,提出了一个宏元素,它捕获了所有这些影响。除了结构建筑物模型外,还需要对整个建筑物的能量耗散进行实际估算,以通过非线性静态程序预测地震荷载作用下的行为。特别是对于砖石建筑,需要一个阻尼模型,该模型将耗散能量表示为单壁破坏模式的函数。基于实验结果,提出了一种新颖的阻尼方法,该方法显示出能够预测由于破坏模式和延性导致的滞后阻尼。提出的非线性概念与已开发的阻尼模型相结合,可以充分利用砌体作为建筑材料的能力。这使得砖石再次成为用于各种建筑任务的可行建筑材料。

著录项

  • 作者

    Norda Hannah;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 ger
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号