首页> 外文OA文献 >Magneto-optische Untersuchungen des elektrisch induzierten Spintransports und des Laser-induzierten Spin-Seebeck-Transports in n-GaAs
【2h】

Magneto-optische Untersuchungen des elektrisch induzierten Spintransports und des Laser-induzierten Spin-Seebeck-Transports in n-GaAs

机译:n-GaAs中电感应自旋输运和激光感应自旋塞贝克输运的磁光研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The topic of this Ph.D. thesis is the magneto-optical investigation of the electrically-induced spin transport and of the laser-induced spin Seebeck transport in n-GaAs. This work is part of the research project "Spin Caloritronics in III-V-Semiconductors" of the DFG priority programm "Spin Caloric Transport" (SPP 1538).Measurements are performed by spatially and time-resolved Faraday spectroscopy. Here, a local spin polarisation is generated by ultrafast laser pulses and detected via the magneto-optical Faraday effect with variable time delay. The material system under investigation, i.e. n-GaAs doped to the metal-to-insulator transition at $n = 2 cdot 10^{16}$ cm$^{-3}$, is optimally suited for spin transport experiments due to long spin dephasing times $au_s geq 100$ ns at low temperatures, which result in large spin transport length of $sim 10,mu$m.The measurement and analysis method used in this work allows to study the temporal evolution of the optically generated spin polarisation by Fourier transformation of spatially resolved magnetic field scans (RSA scans) with very high spatial resolution and to determine the spin drift velocity $v_s$, the spin diffusion constant $D_s$ and the spin dephasing time $au_s$.Spin transport in an applied electric field shows Ohmic transport behaviour $v_s = - mu_s E$ with spin mobility $mu_s = (1159 pm 4)$ cm V$^{-1}$ s$^{-1}$ at $T = 10$ K. Spin transport measurements in dependence of the excitation energy and of the excitation density indicate that, under intense excitation at low temperatures, spin drift and diffusion are influenced by a strong electron-hole interaction. The temperature dependence of the electrically-induced spin transport shows the first experimental verification of the generalized Einstein relation for semiconductors at the metal-to-insulator transition at low temperatures.Spin Seebeck transport in n-GaAs is investigated with laser-induced temperature gradients, which are characterized by photoluminescence measurements. While the spin diffusion constant $D_s$ and the spin dephasing time $au_s$ seem to be dominantly influenced by the large, optically excited electron and hole density, the spin drift velocity $v_s$ shows the expected behaviour for spin Seebeck transport in laser-induced temperature gradients in all the measurements. Particularly, the simultaneous vanishing of $v_s$ and of the temperature gradient $rac{dT}{dx}$ at a lattice temperature of $T = 30$ K confirms the conclusion that these experiments show the first evidence of lateral spin Seebeck transport in a non-magnetic semiconductor.
机译:本博士的主题论文是对n-GaAs中电感应自旋输运和激光感应自旋塞贝克输运的磁光研究。这项工作是DFG优先计划“旋转热量传输”(SPP 1538)的“ III-V-半导体中的旋转热量电子学”研究项目的一部分。测量是通过空间和时间分辨的法拉第光谱进行的。在此,局部自旋极化是由超快激光脉冲产生的,并通过具有可变时间延迟的磁光法拉第效应进行检测。正在研究的材料系统,即在$ n = 2 cdot 10 ^ {16} $ cm $ ^ {-3} $处掺杂到金属到绝缘体过渡的n-GaAs,最适合于自旋传输实验,因为低温下较长的自旋移相时间$ tau_s geq 100 $ ns,这导致较大的自旋输运长度$ sim 10 , mu $ m。这项工作中使用的测量和分析方法可以研究时间演化通过具有非常高的空间分辨率的空间分辨磁场扫描(RSA扫描)的傅里叶变换对光学产生的自旋极化进行测量,并确定自旋漂移速度$ v_s $,自旋扩散常数$ D_s $和自旋移相时间$ tau_s $。在施加的电场中的自旋输运显示欧姆输运行为$ v_s =- mu_s E $,自旋迁移率$ mu_s =(1159 pm 4)$ cm V $ ^ {-1} $ s $ ^ {-1 } $$ T = 10 $K。自激输运测量结果取决于激发能和激发密度,表明在强烈激发下n在低温下,自旋漂移和扩散受到强烈的电子-空穴相互作用的影响。电诱导的自旋输运的温度依赖性显示了半导体在低温下从金属到绝缘体转变的广义爱因斯坦关系的首次实验验证。通过激光诱导的温度梯度研究了n-GaAs中的自旋Seebeck输运,其特征在于光致发光测量。尽管自旋扩散常数$ D_s $和自旋相移时间$ tau_s $似乎受较大的光学激发电子和空穴密度的主要影响,但自旋漂移速度$ v_s $显示了激光自旋塞贝克传输的预期行为在所有测量中引起的温度梯度。特别是,在晶格温度$ T = 30 $ K时$ v_s $和温度梯度$ frac {dT} {dx} $同时消失,证实了以下结论:这些实验显示了横向自旋塞贝克传输的第一个证据在非磁性半导体中。

著录项

  • 作者

    Göbbels Stefan;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 ger
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号