首页> 外文OA文献 >Automated optimization based synthesis of distributed energy supply systems
【2h】

Automated optimization based synthesis of distributed energy supply systems

机译:基于自动化优化的分布式能源供应系统综合

摘要

The conceptual synthesis of distributed energy supply systems (DESS) is an inherently challenging problem that is characterized by time-dependent constraints (e.g., energy demands, ambient temperatures curves, etc.), economy of scale of equipment investment, limited capacities of standardized equipment, and part-load performance characteristics of the considered energy conversion units. Moreover, for optimal DESS synthesis, multiple redundant units are generally to be expected. Optimization-based synthesis methods offer great potentials for the synthesis of cost-effective, energy-efficient, and sustainable systems. However, a lack of adequate, user-friendly methods has so far hindered routine application of optimization in engineering practice. In research, most commonly, superstructure-based synthesis is performed for optimal systems synthesis. In this approach, a user-defined superstructure is analyzed using mathematical programming techniques to identify the optimal solution among the alternatives encoded in the superstructure. Current optimization software facilitates the use of superstructure-based synthesis, e.g., by enabling easy problem definition through graphical superstructure modeling. However, the a priori definition of the superstructure remains a serious obstacle for the use of superstructure-based synthesis in industrial practice: On the one hand, the manual superstructure definition bears the risk to exclude the optimum from consideration; on the other hand, the use of excessively large superstructures causes prohibitively large computational effort. To circumvent these drawbacks, superstructure-generation methods and superstructure-free synthesis methods have been proposed. Superstructure-generation methods automatically define a superstructure for a given synthesis problem. Superstructure-free methods avoid the use of a superstructure by enabling simultaneous alternatives generation and optimization. Available approaches involve several drawbacks that impede their use for the optimal synthesis of distributed energy supply systems: Superstructure-generation methods neglect major DESS characteristics; superstructure-free methods require the manual definition of many technology-specific replacement rules, which is equally difficult as the definition of an appropriate superstructure. In this thesis, two novel synthesis methodologies are proposed to facilitate the use of optimization for efficient and reliable DESS synthesis, thus making optimization accessible for practitioners: The automated superstructure-based and the superstructure-free synthesis methodology. The proposed methodologies avoid both the a priori definition of a superstructure and the manual definition of many technology-specific replacement rules while accounting for the major characteristics inherent to DESS synthesis problems. The superstructure-based framework relies on an algorithm for automated superstructure-generation. The method employs a successive superstructure expansion and optimization strategy that continuously increases the number of units included in the superstructure until the optimal solution is identified. The superstructure-free approach combines evolutionary optimization and deterministic optimization for simultaneous alternatives generation and optimization. A knowledge-integrated mutation operator is proposed that relies on a hierarchically-structured graph, the so-called energy conversion hierarchy (ECH). The ECH efficiently defines all reasonable replacement rules, thus avoiding their manual definition. The mutation operator performs structural replacements for the evolutionary generation of solution alternatives. Both synthesis methodologies use a generic component-based modeling framework, thus making the methodologies independent of the employed mathematical programming formulation. In this thesis, a robust MILP formulation is used that allows to simultaneously optimize the structure, sizing, and operation of distributed energy supply systems accounting for time-varying load profiles, continuous equipment sizing, economy of scale of equipment investment, and part-load equipment performance. In this thesis, it is shown that both synthesis methodologies proposed in this thesis enable practitioners to perform optimization-based synthesis of distributed energy supply systems. It should be pointed out that the use of the proposed synthesis methodologies only requires energy-related expert knowledge that is usually prevailing among engineers active in the field of energy systems synthesis. In particular, no expert knowledge on mathematical programming is required. Finally, this thesis provides the foundation for future research as discussed in the next section. Last but not least, based on the experience gained during the work on this thesis, the author comments on the necessity of optimization for the conceptual DESS synthesis.
机译:分布式能源供应系统(DESS)的概念综合是一个固有的挑战性问题,其特征是与时间相关的约束(例如,能源需求,环境温度曲线等),设备投资规模经济,标准化设备的容量有限以及所考虑的能量转换单元的部分负荷性能特征。此外,为了获得最佳的DESS综合,通常需要多个冗余单元。基于优化的综合方法为经济高效,节能和可持续的系统综合提供了巨大潜力。但是,到目前为止,缺乏适当的,用户友好的方法阻碍了优化在工程实践中的常规应用。在研究中,最常见的是基于上层结构的综合以实现最佳系统综合。在这种方法中,使用数学编程技术分析用户定义的上层建筑,以在上层建筑中编码的替代方案中确定最佳解决方案。当前的优化软件例如通过通过图形上层结构建模使问题的定义变得容易来促进基于上层结构的综合的使用。然而,上层建筑的先验定义仍然是在工业实践中使用基于上层建筑的综合的严重障碍:一方面,手动上层建筑的定义具有将最佳设计排除在外的风险。另一方面,使用过大的上部结构会导致计算量过大。为了克服这些缺点,已经提出了上层建筑生成方法和无上层建筑合成方法。上层建筑生成方法自动为给定的合成问题定义上层建筑。无上层建筑的方法通过同时生成替代方案和优化来避免使用上层建筑。可用的方法包括一些缺点,这些缺点阻碍了它们在分布式能源供应系统的最佳综合中的应用:上层建筑生成方法忽略了主要的DESS特性;无上层建筑的方法需要人工定义许多技术特定的替换规则,这与定义合适的上层建筑同样困难。在本文中,提出了两种新颖的合成方法,以促进优化用于高效,可靠的DESS合成,从而使从业人员可以进行优化:基于自动上层建筑的合成方法和无上层建筑的合成方法。所提出的方法既避免了对上层建筑的先验定义,也避免了许多技术特定的替换规则的人工定义,同时考虑了DESS综合问题固有的主要特征。基于上层建筑的框架依赖于自动上层建筑生成的算法。该方法采用了连续的上部结构扩展和优化策略,该策略不断增加上部结构中包含的单元数,直到确定最佳解决方案为止。无上层结构的方法结合了演化优化和确定性优化,以同时生成替代方案和优化方案。提出了一种知识集成的变异算子,该算子依赖于层次结构图,即所谓的能量转换层次(ECH)。 ECH有效地定义了所有合理的替换规则,从而避免了人工定义。变异算子执行结构替换,以生成解决方案替代方案。两种综合方法论都使用基于通用组件的建模框架,因此使方法论与所采用的数学编程公式无关。在本文中,使用了健壮的MILP公式,该公式允许同时优化分布式能源供应系统的结构,规模和运行,从而考虑到随时间变化的负载曲线,连续的设备规模,设备投资的规模经济和部分负载设备性能。本文证明,本文提出的两种综合方法论都使从业人员能够执行基于优化的分布式能源供应系统综合。应当指出的是,所提出的合成方法的使用仅需要与能源相关的专业知识,而这些知识通常是活跃在能源系统合成领域的工程师中普遍使用的知识。特别是,不需要数学编程方面的专业知识。最后,本文为下一部分讨论的未来研究提供了基础。最后但并非最不重要的一点是,根据在本文工作期间获得的经验,作者评论了对概念DESS综合进行优化的必要性。

著录项

  • 作者

    Voll Philip;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号