首页> 外文OA文献 >DC and RF characterization of NiSi Schottky barrier MOSFETs with dopant segregation
【2h】

DC and RF characterization of NiSi Schottky barrier MOSFETs with dopant segregation

机译:具有掺杂剂隔离的NiSi肖特基势垒MOSFET的DC和RF表征

摘要

The continuous downscaling of the Si-based microelectronics, which is the fundament of today's information technology, requires novel concepts for the source/drain (S/D) architecture of metal-oxide-semiconductor field-effect transistors (MOSFETs). The improvement of the carrier injection is of prime importance because of the increasing impact of parasitic resistances which strongly limit the performance of ultimately scaled transistors. Moreover, steeper junctions at the contact/channel interfaces become more and more crucial for nanoscale devices. In this context, Schottky-barrier (SB) MOSFETs with metallic S/D are promising performance boosters since they offer low extrinsic resistances and atomically abrupt junctions formed at the metal/silicon interface. However, a drawback of these devices is their performance which is inferior to conventional MOSFETs due to the relatively high Schottky barrier. Recently, dopant segregation has attracted much interest since the highly doped layer formed at the silicide/silicon interface during silicidation strongly improves the tunneling probability of carriers through Schottky contacts. The present thesis studies the integration of NiSi with dopant segregation in SB-MOSFETs on thin-body silicon-on-insulator experimentally. The objective of the detailed direct-current (DC) and radio-frequency (RF) characterization is to gain a better insight into the physics of these devices. The modeling of NiSi/p-Si Schottky contacts using a numerical model which combines the thermionic emission theory with image-force induced barrier lowering and quantum-mechanical tunneling provides a solid understanding of the carrier injection of Schottky contacts. The characterization of Schottky diodes with silicidation induced dopant segregation using boron, arsenic and antimony reveals effective Schottky barrier heights in the 0.1eV regime depending on the implantation dose. Below this value SB-MOSFETs are capable of outperforming conventional MOSFETs. Successfully fabricated long- and short-channel p- and n-type SB-MOSFETs with and without dopant segregation are characterized performing direct-current (DC) measurements. Transistors with 80nm channel length reveal on-currents as high as 427µA/µm for p-type and 1150µA/µm for n-type devices, respectively, which compete well with state-of-the-art SB-MOSFETs. For the first time, the extrinsic and intrinsic device parameters of short-channel n- and p-type NiSi SB-MOSFETs are extracted using scattering parameter measurements. The radio-frequency (RF) investigation of the devices reveals a perfectly linear scaling and high cut-off frequencies of 140GHz for n-type and 63GHz for p-type SB-MOSFETs with a gate length of 80nm. The optimization of the reproducible fabrication process improves the S/D resistances by 30% and yields a value of 508 Ohm µm for devices fabricated on 20nm thick silicon-on-insulator. Although, the DC performance of SB-MOSFETs is strongly deteriorated by high Schottky barriers, it has only a small impact on the cut-off frequency. This can be explained by the similar behavior of the transconductance and the total gate capacitance when the implantation dose and therefore the Schottky barrier height is changed. The benchmarking of the obtained cut-off frequencies with state-of-the-art MOSFETs demonstrates the superior RF performance of the fabricated devices and predicts an impressive performance increase for further downscaling. RF performance limiting parameters are identified and the origin of the RF variability of SB-MOSFETs is discussed. In summary, the results of this work demonstrate a high potential of NiSi S/D SB-MOSFETs with dopant segregation for a use in ultimately scaled microelectronics.
机译:硅基微电子器件的不断缩小,这是当今信息技术的基础,它需要金属氧化物半导体场效应晶体管(MOSFET)的源/漏(S / D)体系结构的新颖概念。载流子注入的改善是最重要的,因为寄生电阻的影响越来越大,这极大地限制了最终定标的晶体管的性能。此外,对于纳米级器件,接触/通道界面处更陡峭的结变得越来越重要。在这种情况下,具有金属S / D的肖特基势垒(SB)MOSFET具有良好的性能提升,因为它们具有低的非本征电阻和在金属/硅界面处形成的原子突变结。但是,由于相对较高的肖特基势垒,这些器件的缺点是其性能不如常规MOSFET。近来,由于在硅化期间在硅化物/硅界面处形成的高掺杂层极大地提高了载流子通过肖特基接触的隧穿可能性,因此掺杂剂的分离引起了人们的极大兴趣。本文研究了绝缘体上薄体硅上SB-MOSFETs中NiSi与掺杂剂偏析的集成。详细的直流(DC)和射频(RF)表征的目的是更好地了解这些设备的物理原理。使用数值模型对NiSi / p-Si肖特基接触进行建模,该模型将热电子发射理论与图像力引起的势垒降低和量子力学隧穿相结合,从而对肖特基接触的载流子注入有了深刻的了解。使用硼,砷和锑进行硅化诱导的掺杂物偏析对肖特基二极管进行表征,揭示了有效的肖特基势垒高度在0.1eV范围内,具体取决于注入剂量。低于该值,SB-MOSFET能够胜过常规MOSFET。具有和没有掺杂剂隔离的成功制造的长沟道和短沟道p型和n型SB-MOSFET的特征在于执行直流(DC)测量。沟道长度为80nm的晶体管的导通电流对于p型器件分别为427µA / µm,对于n型器件则为1150µA / µm,这与最先进的SB-MOSFET竞争激烈。第一次,使用散射参数测量来提取短沟道n型和p型NiSi SB-MOSFET的外部和固有器件参数。器件的射频(RF)研究表明,栅极长度为80nm的n型为140GHz,p型SB-MOSFET为63GHz,具有完美的线性缩放和高截止频率。可复制制造工艺的优化将S / D电阻提高了30%,对于在20nm厚的绝缘体上硅上制造的器件,其值达到508 Ohm µm。尽管高的肖特基势垒严重削弱了SB-MOSFET的DC性能,但对截止频率的影响很小。当注入剂量和肖特基势垒高度改变时,跨导和总栅极电容的相似行为可以解释这一点。使用最先进的MOSFET对获得的截止频率进行基准测试,证明了所制造器件的出色RF性能,并预测了可观的性能提升,可进一步缩小规模。确定了射频性能限制参数,并讨论了SB-MOSFET的射频可变性的起源。总而言之,这项工作的结果证明了具有掺杂剂隔离功能的NiSi S / D SB-MOSFET具有很高的潜力,可用于最终规模化的微电子学。

著录项

  • 作者

    Urban Christoph Johannes;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号