首页> 外文OA文献 >Adaptive resolution simulations : combining multi-particle collision dynamics and molecular dynamics simulations for fluids
【2h】

Adaptive resolution simulations : combining multi-particle collision dynamics and molecular dynamics simulations for fluids

机译:自适应分辨率模拟:将多粒子碰撞动力学和分子动力学模拟相结合进行流体模拟

摘要

In soft matter physics there is a variety of systems where phenomena occur on different time- and length scales which are inherently coupled. Examples of such systems are colloidal suspensions, polymer solutions or biological macromolecules. To simulate such systems, it is necessary to consistently take into account atomistic and hydrodynamic interactions within one computational scheme, which is feasible from the requirements of memory consumption and CPU time usage. The hybrid simulation approach presented in this work solves this problem by coupling of Molecular Dynamics and Multi-Particle Collision dynamics simulations. It allows to change the representation of the molecules composing the fluid “on the fly”, taking into account the atomistic details where it is needed, while keeping the description of the rest of the fluid on the mesoscale level. Due to the application of such hybrid coupling between fine- and coarse-grained description, it is possible to simulate larger systems for longer times efficiently, while taking into account solvent properties and hydrodynamics. The main goal of this work is to construct a hybrid description of the solvent in such a way that hydrodynamic interactions are properly accounted for. To reveal the hydrodynamic properties of the hybrid fluid, a number of correlations functions for various systems with different hybrid states were calculated. It was found that transverse current correlation functions related to the viscosity coefficient are equal for all states of the fluid, i.e. “pure” MD, “pure” MPC and all “mixed state” systems. The same applies to the properties of long tile tails in the velocity autocorrelation function, which is influencing the diffusion coefficient of the fluid. Therefore, these results show that the transport properties of the fluid are not altered throughout the hybrid description. In order to verify that hydrodynamics is maintained in the hybrid system, several test flow simulations such as Poiseuille flow, shear flow, and Couette flow were performed. They have shown that the behavior of the hybrid system under flow resembles that of a fluid modeled by a mono-scale method, and it could be shown that the deviation of the velocity profile from the theoretically predicted one is less than 2%. Although the full thermodynamic equilibrium is impossible due the fundamental differences between MD and MPC methods, the hybrid MD/MPC scheme presented in this work is proved to be a very promising approach for simulation of complex fluids. By applying the restraining force in the buffer zone it is possible to maintain dynamical equilibrium throughout the hybrid system. It was shown that the transport properties of the hybrid fluid are conserved across the transition zone between the two fluid representations in one simulation, allowing the consistent description of hydrodynamics in the whole coupled system. By changing the representation of the molecules “on the fly”, the hybrid MD/MPC approach allows to couple within a single simulation atomistic and mesoscale representation of fluids, providing a valuable tool for many problems in soft matter science.
机译:在软物质物理学中,存在各种系统,其中现象以固有的方式在不同的时间和长度尺度上发生。这种系统的例子是胶体悬浮液,聚合物溶液或生物大分子。为了模拟这样的系统,有必要在一个计算方案中始终考虑原子和流体动力相互作用,这从内存消耗和CPU时间使用的要求来看是可行的。这项工作中提出的混合仿真方法通过结合分子动力学和多粒子碰撞动力学仿真解决了这个问题。考虑到需要的原子细节,它允许“动态”改变组成流体的分子的表示,同时将其余流体的描述保持在中尺度水平上。由于在细粒度描述和粗粒度描述之间应用了这种混合耦合,因此可以在考虑溶剂特性和流体动力学的情况下,有效地模拟大型系统更长的时间。这项工作的主要目的是以适当考虑流体动力学相互作用的方式构建溶剂的混合描述。为了揭示混合流体的流体动力学特性,计算了具有不同混合状态的各种系统的许多相关函数。已经发现,与粘度系数有关的横向电流相关函数对于流体的所有状态,即“纯” MD,“纯” MPC和所有“混合状态”系统都是相等的。速度自相关函数中的长瓷砖尾部的属性也是如此,这会影响流体的扩散系数。因此,这些结果表明,在整个混合描述中,流体的传输特性没有改变。为了验证混合动力系统中是否保持了流体动力学特性,进行了一些测试流动模拟,例如泊瓦伊流,剪切流和库埃特流。他们已经表明,混合系统在流动下的行为类似于通过单尺度方法建模的流体的行为,并且可以表明,速度分布与理论预测值的偏差小于2%。尽管由于MD和MPC方法之间的根本差异,不可能实现完全的热力学平衡,但事实证明,这项工作中提出的MD / MPC混合方案是一种非常有前途的模拟复杂流体的方法。通过在缓冲区中施加约束力,可以在整个混合动力系统中保持动力平衡。结果表明,在一次模拟中,混合流体的传输特性在两种流体表示之间的过渡区域上是守恒的,从而可以在整个耦合系统中对流体力学进行一致的描述。通过“动态”改变分子的表示,混合MD / MPC方法允许在单个模拟中耦合流体的原子和中尺度表示,从而为解决软物质科学中的许多问题提供了有价值的工具。

著录项

  • 作者

    Alekseeva Uliana;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号