首页> 外文OA文献 >Experimentelle und numerische Untersuchung magerer Methan-Hochdruckverbrennung unter Mikrogravitation
【2h】

Experimentelle und numerische Untersuchung magerer Methan-Hochdruckverbrennung unter Mikrogravitation

机译:微重力下稀薄高压甲烷燃烧的实验与数值研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

The experimental and numerical examination of laminar lean premixed combustion of methane air mixtures at high pressures under normal and microgravity is the aim of this thesis. The elimination of buoyancy under microgravity is essential for the exact determination of the flammability limit and the burning velocity and furthermore allows the analysis of flame instabilities. First the lean flammability limit for upward combustion of methane was determined by the pressure increase inside the combustion chamber for pressures up to 70 bar under normal gravity. The chamber was equipped with an optical access which was used for filming the combustion in the microgravity experiments. These experiments were conducted at the Bremen drop tower which allows 4,7 sec microgravity. In the experiments the combustion chamber was first filled with a predefined methane air mixture which was then ignited by a spark. The combustion was then filmed by a high speed camera with schlieren optics. These films were used to determine the flame speeds and the burning velocity. The burning velocity for mixtures close to the flammability limit were ca. 1 mm/s. The flammability limit under microgravity is leaner than under normal conditions. Furthermore flame front instabilities were observed. The development of the amplitudes of the cellular instabilities were different to each other and a small change in the initial conditions had a large influence on the behavior of the flame front. The numerical simulations of one-dimensional plane flames in an idealized combustion chamber were conducted with the program FlameMaster. Both the flammability limit and the burning velocities from the simulations showed a good correlation to the experimental results.
机译:本文的目的是在常压和微重力下,对甲烷空气混合物进行层流稀薄预混燃烧的实验和数值研究。消除微重力下的浮力对于精确确定可燃性极限和燃烧速度至关重要,而且可以分析火焰的不稳定性。首先,向上燃烧甲烷的稀薄燃烧极限是由在正常重力下压力高达70 bar的燃烧室内的压力增加确定的。该室配备有光学通道,该通道用于在微重力实验中记录燃烧情况。这些实验是在不来梅吊塔上进行的,该塔允许进行4.7秒的微重力作用。在实验中,燃烧室首先充满预定的甲烷空气混合物,然后由火花点燃。然后用带有schlieren光学元件的高速相机拍摄燃烧图像。这些薄膜用于确定火焰速度和燃烧速度。混合物的燃烧速度接近可燃极限。 1毫米/秒微重力下的可燃性极限比正常条件下更稀。此外,观察到火焰前缘不稳定性。细胞不稳定性幅度的发展彼此不同,并且初始条件的微小变化对火焰前沿的行为有很大的影响。使用程序FlameMaster对理想化燃烧室内的一维平面火焰进行了数值模拟。模拟的可燃极限和燃烧速度均与实验结果具有良好的相关性。

著录项

  • 作者

    Hyvönen Jari Johannes;

  • 作者单位
  • 年度 2000
  • 总页数
  • 原文格式 PDF
  • 正文语种 ger
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号