首页> 外文OA文献 >Aufbau und Validierung einer digitalen Messstrecke für die dynamische Bestimmung der Krümmungsradien und der Lage der menschlichen Augenlinse unter natürlichen Sehbedingungen
【2h】

Aufbau und Validierung einer digitalen Messstrecke für die dynamische Bestimmung der Krümmungsradien und der Lage der menschlichen Augenlinse unter natürlichen Sehbedingungen

机译:在自然视觉条件下动态确定人眼镜片的曲率半径和位置的数字测量部分的设置和验证

摘要

Purpose: In this thesis an experimental setup was to be developed in order to quantify the radii of curvature and the position of the human crystalline lens. There had to be determined the anterior and posterior radii of curvature of the crystalline lens as well as the decentralisation and rotation of the crystalline lens with regard to the corneal axis. The experimental setup had to permit static measurements under constant accommodation on the one hand and, on the other, dynamic measurements with continuous changes of accommodation under natural conditions of vision. Methods: The eye was illuminated by two infrared light sources. In this way reflecting images were produced at the anterior corneal surface and the anterior and posterior lens surface, the so-called Purkinje images I, III, and IV. They were then registered and measured by a camera taking pictures of infrared light. The size of these Purkinje images is linked with the radius of curvature of each of the reflecting surfaces. The position of the Purkinje images in relation to the front part of the eye is dependent on the rotation and decentralisation of each of the surfaces. This thesis is divided into three parts: 1. Because of the completely new demands there had to be developed, in several steps, collimated light sources (because of the infrared light the subjects were not dazzled), a fixation object with variable stimuli of accommodation, a telecentric objective without perspective errors due to different axial positions of the Purkinje images (otherwise refocusing had been necessary, so that the accommodation had to be constant during this time and no dynamic measurements under accommodation changes had been possible) and biconvex plastic lenses for a model eye (for the simulation of the human crystalline lens during the following validation measurements). Afterwards all components were tested carefully. 2. Then, the human eye was simulated by the model eye to verify the accuracy of the experimental setup. There were determined the following measuring errors: Radius of curvature of the anterior lens surface r3 ±0,38 mm, radius of curvature of the posterior lens surface r4 ±0,51 mm, position of the corneal axis Kappa±0,56°, crystalline lens rotation Alpha±0,26° and crystalline lens decentralisation d ±0,02mm. 3. Finally, the described parameters were determined for 9 emmetropic subjects in a pilot study. In this study, the horizontal components were measured, the vertical components can be determined in the same way. The measurements were done under static conditions (accommodation to 25 cm and cycloplegia) as well as under dynamic conditions (periodic and continuous changes between accommodated and relaxed eye). Results: The static as well as the dynamic measurements with a change of accommodation of nearly 4 D showed that the contribution to the accommodation of the anterior lens surface was 2/3 and of the posterior surface 1/3. For the orientation of the cornea and the crystalline lens the following values were found: Position of the corneal axis Kappa= 5,98° ± 2,26° in temporal direction, rotation of the crystalline lens Alpha= -0,14° ± 1,10° to nasal, lens decentralisation d = -0,11 mm ± 0,07 mm to nasal. So we can say that the influence of accommodation on these values can be neglected within the fixation and measuring tolerances. These results can be interpreted that normally the angle Kappa is positive, that the crystalline lens is nearly not inclined and that the lens shows – as well as the centre of the pupil – a small decentralisation to nasal.
机译:目的:在本文中,我们将开发一个实验装置,以量化曲率半径和人类晶状体的位置。必须确定晶状体的前,后曲率半径以及晶状体相对于角膜轴的分散和旋转。实验装置必须一方面允许在恒定调节下进行静态测量,另一方面允许在自然视觉条件下进行连续调节下的动态测量。方法:用两个红外光源照亮眼睛。通过这种方式,在角膜前表面以及晶状体前后表面产生反射图像,即所谓的浦肯野图像I,III和IV。然后将它们记录下来,并通过照相机拍摄红外光进行测量。这些浦肯野图像的大小与每个反射面的曲率半径有关。浦肯野图像相对于眼睛前部的位置取决于每个表面的旋转和分散。本论文分为三个部分:1.由于需要全新的要求,因此必须在多个步骤中开发准直光源(由于红外光使受试者不目眩),这是一种具有可变适应性刺激的固定物体,没有因Purkinje影像的轴向位置不同而导致的透视误差的远心物镜(否则需要重新聚焦,因此在此期间适应度必须保持恒定,并且在适应度变化下无法进行动态测量),并且使用了双凸面塑料透镜模型眼睛(用于在以下验证测量期间模拟人晶状体)。之后,所有组件均经过仔细测试。 2.然后,通过模型眼睛对人眼进行仿真,以验证实验设置的准确性。确定了以下测量误差:晶状体前表面的曲率半径r3±0.38 mm,晶状体后表面的曲率半径r4±0.51 mm,角膜轴位置Kappa±0.56°,晶状体旋转Alpha±0.26°,晶状体偏心d±0.02mm。 3.最后,在一项初步研究中确定了9个正视受试者的描述参数。在这项研究中,测量了水平分量,可以用相同的方法确定垂直分量。测量是在静态条件下(适应25厘米和睫状肌麻痹)以及动态条件下(在适应和放松的眼睛之间进行周期性的连续变化)进行的。结果:静态和动态测量的适应性变化近4 D表明,对晶状体前表面的适应性贡献为2/3,对后表面的贡献为1/3。对于角膜和晶状体的取向,发现以下值:角膜轴Kappa的位置在时间方向上为5.98°±2.26°,晶体的旋转Alpha = -0.14±1距鼻镜10°,鼻镜偏心d =鼻镜-0,11 mm±0,07 mm。因此,可以说在固定和测量公差范围内可以忽略调节对这些值的影响。这些结果可以解释为,正常情况下角Kappa为正,晶状体几乎不倾斜,并且晶状体以及瞳孔中心向鼻腔散布很小。

著录项

  • 作者

    Kirschkamp Thomas;

  • 作者单位
  • 年度 2002
  • 总页数
  • 原文格式 PDF
  • 正文语种 ger
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号