首页> 外文OA文献 >Computational Modeling of Electrical and Phonon Properties of Skutterudites and Two-Dimensional Transition Metal Dichalcogenides
【2h】

Computational Modeling of Electrical and Phonon Properties of Skutterudites and Two-Dimensional Transition Metal Dichalcogenides

机译:方钴矿和二维过渡金属双硫属元素化物的电和声子性质的计算模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

This dissertation documents the computational modeling of skutterudite and two-dimensional transition metal dichalcogenide (2D TMD) materials for energy and electronic applications by analyzing the effects of materials doping and heterostructure formation on structural, energetic, electrical, phonon, and thermal properties. These topics remain largely unexplored and can accelerate materials development by providing insight on structure-properties-performance relationships.Skutterudites are commonly studied for thermoelectric applications because they are low-cost, easy to process, and offer good intrinsic transport properties. They also exist as large, open structures which can be altered through filler atoms or substitutional dopants. A density functional theory (DFT)-based investigation of dopant effects on skutterudite compounds provided insight to advance the understanding of electrical and phonon properties that experiments could not measure. This also offered a good benchmark material for developing a modeling scheme that was employed for 2D TMD materials. 2D TMD nanosheets also exhibit large variability in structure type, dimensionality, and composition and have attracted much interest for their magnetic, electronic, optoelectronic, catalytic, and thermoelectric properties. Their low dimensionality makes them promising candidates for field-effect transistor (FET) device applications and introduces quantum confinement effects and diffusive boundary scattering, potentially improving their electrical and transport properties. The exploration of composition, substitutional doping, and heterostructure effects is needed for further 2D TMD materials development and property improvement.This dissertation offers an analysis of the structure-property relationships for a wide range of properties on bulk skutterudite and 2D TMD materials. The three key outcomes of this work are: (1) a high throughput approach to compute and analyze electrical and phonon properties, (2) a screening method for investigating 2D TMD materials and highlighting preferred compositions, and (3) design principles for predicting structures and properties to guide experiments. The optimized high throughput approach encompasses: DFT-based total energy minimization calculations to investigate the geometric, energetic, and electronic structure data; Boltzmann transport theory, in combination with electronic band energies, to estimate electrical conductivity (σ), Seebeck coefficient (S), and power factor (S2σ) values; density functional perturbation theory (DFPT)-based second-order force constant calculations to determine phonon dispersion and density of states (DoS) spectra; and the atomistic Green’s function (AGF) method, using force constants as input, to compute interfacial heat flux, phonon transmission coefficients, and thermal boundary conductance (TBC). Error mitigation was handled by optimizing model parameters and validating results through comparison with literature and experimental data. Through the optimized high throughput approach, dozens of 2D TMD structures can now be analyzed within days, whereas initial optimization calculations for each structure took up to one week to compute. Overall, these materials offer great potential for materials-by-design exploration and understanding their structural, electrical, and phonon properties are essential for advancement towards commercial applications.
机译:本文通过分析材料掺杂和异质结构形成对结构,高能,电,声子和热学性质的影响,记录了用于能量和电子应用的方钴矿和二维过渡金属二卤化钴(2D TMD)材料的计算模型。这些主题在很大程度上尚未得到探索,并且可以通过提供对结构-性能-性能关系的洞察力来加速材料的开发。方钴矿通常用于热电应用,因为它们成本低,易于加工并且具有良好的固有传输性能。它们也以可以通过填充原子或取代掺杂剂改变的大的开放结构存在。基于密度泛函理论(DFT)的掺杂剂对方钴矿化合物的研究为深入了解实验无法测量的电和声子性能提供了见识。这也为开发用于2D TMD材料的建模方案提供了很好的基准材料。二维TMD纳米片在结构类型,尺寸和组成方面也表现出很大的可变性,并因其磁性,电子,光电,催化和热电性质引起了人们的极大兴趣。它们的低尺寸使其成为场效应晶体管(FET)器件应用的有希望的候选者,并引入了量子限制效应和扩散边界散射,从而有可能改善其电学和传输性能。二维TMD材料的进一步开发和性能改进需要探索组成,替代掺杂和异质结构的影响。本论文对块状方钴矿和2D TMD材料的广泛性能之间的结构-特性关系进行了分析。这项工作的三个主要成果是:(1)一种用于计算和分析电和声子特性的高通量方法;(2)一种用于研究2D TMD材料并突出显示优选成分的筛选方法;(3)用于预测结构的设计原理和属性以指导实验。优化的高通量方法包括:基于DFT的总能量最小化计算,用于研究几何,能量和电子结构数据;玻尔兹曼输运理论结合电子带能来估计电导率(σ),塞贝克系数(S)和功率因数(S2σ)值;基于密度泛函扰动理论(DFPT)的二阶力常数计算,可确定声子的色散和状态密度(DoS)光谱;以及原子力格林函数(AGF)方法(使用力常数作为输入)来计算界面热通量,声子传递系数和热边界电导(TBC)。通过优化模型参数并与文献和实验数据进行比较来验证结果,从而减轻了错误。通过优化的高通量方法,现在可以在几天之内分析数十种2D TMD结构,而每个结构的初始优化计算最多需要一周的时间来计算。总体而言,这些材料为按设计进行材料探索和了解其结构,电学和声子特性提供了巨大的潜力,这对于推进商业应用至关重要。

著录项

  • 作者

    Williamson Izaak Gene;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号