首页> 外文OA文献 >Synthesis and Properties of Nanocrystalline Tungsten Heavy Alloy Powders Consolidated by Pulsed Electric Current Sintering
【2h】

Synthesis and Properties of Nanocrystalline Tungsten Heavy Alloy Powders Consolidated by Pulsed Electric Current Sintering

机译:脉冲电流烧结固结纳米晶钨重合金粉末的制备与性能

摘要

Amorphous and nanocrystalline W-based materials are candidate alloys where high toughness and abrasion resistance are required, such as for kinetic energy penetrators (KEPs). Using a bottom-up approach to produce a tungsten heavy alloy (WHA), W-based alloys, including W-Mo-Fe and W-Cr-Fe, have been produced using high-energy ball milling and consolidated with pulsed electric current sintering (PECS). Powder consolidation using PECS allows for fast consolidation and for high relative densities to be achieved after sintering at a fraction of the melting temperature. Rapid consolidation of the alloyed powders also reduces grain growth, resulting in improved mechanical properties. During consolidation of mechanically alloyed powders, the structure evolves with sintering conditions due to the residual stress introduced during ball milling and the addition of other component elements added to promote amorphization. Multiple nanoscale crystalline microstructures were seen in the W based alloys depending on processing conditions. Negligible porosity was achieved at nearly one third of homologous temperature, 1050 °C for W-Mo-Fe and 1200 °C for W-Cr-Fe, using nanocrystalline powders and consolidating with PECS. Specimens containing nanocrystalline microstructures showed extremely high hardness and improved mechanical properties over several baseline microcrystalline tungsten alloys. Consolidated alloys had improved hardnesses over baseline materials, up to 300%. Intermetallic formation aided sintering by filling in pores and acting as a binder phase between nanocrystalline powder particles. At temperatures above 1500 °C, liquid-phase vi sintering characteristics were observed, including the formation of spheroidal grains and rapid grain growth. PECS offers a novel processing route for tailoring the structure and properties of these advanced alloys by altering the grain size. The ballistic performance of these alloys under selected process parameters will be evaluated during subsequent studies and will determine whether or not these alloys can be used as effective KEPs.
机译:非晶态和纳米晶的W基材料是需要高韧性和耐磨性的候选合金,例如动能穿透剂(KEP)。使用自下而上的方法生产钨重合金(WHA),已使用高能球磨生产了W基合金,包括W-Mo-Fe和W-Cr-Fe,并通过脉冲电流烧结进行了固结(PECS)。使用PECS进行粉末固结可以实现快速固结,并且可以在熔融温度的一小部分烧结后实现较高的相对密度。合金粉末的快速固结也减少了晶粒长大,从而改善了机械性能。在机械合金化粉末的固结过程中,由于球磨过程中引入的残余应力和添加的其他成分以促进非晶化,结构会随着烧结条件的发展而变化。根据加工条件,在W基合金中可以看到多个纳米级的晶体微观结构。使用纳米晶体粉末并与PECS固结,在几乎相同温度的三分之一(W-Mo-Fe为1050°C,W-Cr-Fe为1200°C)下实现了可忽略的孔隙率。与几种基本的微晶钨合金相比,含有纳米晶微结构的样品显示出极高的硬度并改善了机械性能。与基准材料相比,固结合金的硬度提高了300%。金属间化合物的形成通过填充孔并充当纳米晶体粉末颗粒之间的粘结相来辅助烧结。在高于1500°C的温度下,观察到液相vi烧结特性,包括球状晶粒的形成和晶粒的快速生长。 PECS提供了一种新颖的加工路线,可通过改变晶粒尺寸来调整这些高级合金的结构和性能。这些合金在选定工艺参数下的弹道性能将在后续研究中进行评估,并将确定这些合金是否可以用作有效的KEP。

著录项

  • 作者

    Livers Steven James;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 入库时间 2022-08-20 20:29:05

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号