首页> 外文OA文献 >Statistical Clustering of Microseismic Event Spectra to Identify Subsurface Structure
【2h】

Statistical Clustering of Microseismic Event Spectra to Identify Subsurface Structure

机译:微地震事件谱的统计聚类以识别地下结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Understanding subsurface structure by studying microseismicity influences a wide range of activities, including energy extraction, aquifer storage, carbon sequestration, and seismic hazard assessment. Identifying individual fractures in a larger fault system is key to characterizing, understanding, and potentially mitigating risks of natural or induced seismicity.A year-long study associated with a carbon dioxide (CO2) sequestration project was conducted at the Aneth oil field in southeast Utah to record microseismicity at a single downhole geophone array. A previous analysis located events by first identifying event multiplets consisting of highly correlated time-domain waveforms on receivers shallower than the depth of the microseismic events. Then, a relative location algorithm was used within each multiplet. Hypocenters turned out to be in a layer not directly impacted by either water or CO2 injection or oil extraction. Nevertheless, the locations outlining faults are consistent with the geology of the basin.In this thesis, hierarchical agglomerative clustering is used to identify subtle differences for one multiplet at the deepest receiver in the array, whose waveforms might include guided waves. Each event starts out as its own cluster, after which events are iteratively combined based on a dissimilarity metric until a single, final cluster results. Two distance measures are defined, spectral and temporal distance, and used to calculate dissimilarity in the clustering algorithm.While time-domain clustering was inconclusive, clustering in the frequency domain reveals first spectral differences between two groups of events in multiplet 18, which may originate in different lithologies. A more detailed look identifies subclusters in one of these groups that organize spatially. Subtle spectral differences are detected that are not the result of attenuation and may identify individual en echelon fractures within the same lithological unit.More investigation into the application of hierarchical agglomerative clustering to event spectra and waveforms is needed to identify geophysical conditions where the method could be further utilized. Additional station components, stations, and multiplet analysis could further characterize the methodu27s strengths and constraints, as well as refinement of the geophysical interpretation of results.
机译:通过研究微地震来了解地下结构会影响广泛的活动,包括能量提取,含水层存储,碳固存和地震危害评估。识别较大断层系统中的单个裂缝是表征,理解和潜在缓解自然地震或诱发地震危险的关键。在犹他州东南部的Aneth油田进行了一项为期一年的与二氧化碳封存项目相关的研究在单个井下地震检波器阵列上记录微地震。先前的分析通过首先识别由多重相关的时域波形组成的事件多重波来定位事件,这些多重波时域波形比微地震事件的深度浅。然后,在每个多重图中使用相对定位算法。震中位于不被水或二氧化碳注入或采油直接影响的层中。尽管如此,概述断层的位置与盆地的地质情况是一致的。在本文中,使用分层的聚集聚类来识别阵列中最深处接收器的一个多重峰的细微差异,其波形可能包括导波。每个事件都以其自己的群集开始,然后根据不相似度指标迭代地合并事件,直到得到单个最终群集。定义了两个距离度量,即频谱距离和时间距离,并用于计算聚类算法中的相异性。虽然时域聚类没有结论,但频域中的聚类揭示了多重峰18中两组事件之间的第一频谱差异,这可能是由在不同的岩性中。更详细的外观可识别这些按空间组织的组之一中的子类。检测到的细微光谱差异不是衰减的结果,并且可以识别同一岩性单元内的单个梯级裂缝。需要进一步研究将分层凝聚聚类应用于事件光谱和波形,以识别该方法可能适用的地球物理条件进一步利用。附加的站组成,站和多重分析可以进一步表征该方法的优势和局限性,以及对结果的地球物理解释的改进。

著录项

  • 作者

    Fagan Deborah Kay;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号