首页> 外文OA文献 >The Electronic and Thermodynamic Properties of Ca doped LaFeO3 – A First Principles Study Using Density Functional Theory
【2h】

The Electronic and Thermodynamic Properties of Ca doped LaFeO3 – A First Principles Study Using Density Functional Theory

机译:Ca掺杂LaFeO3的电子和热力学性质-使用密度泛函理论的第一个原理研究

摘要

Density functional theory (DFT) was used to evaluate the electronic and thermodynamic properties of Ca-doped LaFeO3 (La1-xCaxFeO3-y). La1-xCaxFeO3-y exhibits ionic (O2- anions) and electronic conductivity at high temperatures and has potential applications in gas separation, syngas production and solid oxide fuel cell cathodes. DFT is a computational technique based on the First Principles of physics, derived from the theory of quantum mechanics. DFT approximates the ground state energy of a system and can subsequently determine many bulk properties such as lattice constants, magnetic states, band gap, density of states (DOS) and defect formation energy (DFE).The calculated ground state structure for LaFeO3 was assumed to be orthorhombic and the optimized magnetic state was the G-type antiferromagnetic. The Hubbard U (DFT+U) method successfully corrected the underestimated band gap and magnetic moment of Fe for the orthorhombic LaFeO3 system. The electronic structures (DOS) indicated the substitution of Ca atoms introduced holes; while an oxygen vacancy introduced extra electrons and the combination of these defects annihilate the defect states. The calculated DFE indicated the addition of a Ca atom is energetically favorable, but the formation of an oxygen vacancy was energetically very unfavorable. The combination of the two defects lowered the DFE considerably, indicating that the ionic conductivity in LaFeO3 can be substantially increased with the introduction of Ca atoms.
机译:密度泛函理论(DFT)用于评估掺杂Ca的LaFeO3(La1-xCaxFeO3-y)的电子和热力学性质。 La1-xCaxFeO3-y在高温下具有离子(O2-阴离子)和电子传导性,在气体分离,合成气生产和固体氧化物燃料电池阴极中具有潜在的应用。 DFT是一种基于量子力学原理的,基于物理学第一原理的计算技术。 DFT近似于系统的基态能量,随后可以确定许多体性质,例如晶格常数,磁态,带隙,态密度(DOS)和缺陷形成能(DFE)。假定计算得出的LaFeO3基态结构为正交晶,最佳磁态为G型反铁磁。 Hubbard U(DFT + U)方法成功地校正了正交晶LaFeO3系统低估的Fe带隙和磁矩。电子结构(DOS)表明Ca原子取代了引入的空穴。而氧空位引入了多余的电子,这些缺陷的结合消除了缺陷状态。计算出的DFE表明添加Ca原子在能量上是有利的,但是氧空位的形成在能量上是非常不利的。两种缺陷的结合大大降低了DFE,表明LaFeO3中的离子电导率可以通过引入Ca原子而大大提高。

著录项

  • 作者

    Daniel Davis George;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号