首页> 外文OA文献 >DNS of Turbulent Flow and Heat Transfer in a Channel with Surface Mounted Cubes
【2h】

DNS of Turbulent Flow and Heat Transfer in a Channel with Surface Mounted Cubes

机译:表面安装立方体的通道中湍流和传热的DNS

摘要

The turbulent flow and heat transfer in a channel with surface mounted cubical obstacles forms a generic example of a problem that occurs in many engineering applications, for instance in the design of cooling devices. We have performed a numerical simulation of it without using any turbulence models. This approach is the most accurate - but also the most expensive - way of computing complex turbulent flows since all dynamically significant scales of motion are to be solved numerically from the unsteady, incompressible Navier-Stokes equations and the energy equation. In view of the computational complexity, our first concern is to reduce the computational cost as far as we can get. We discretise convective and diffusive operators such that their spectral properties are preserved, i.e. convection ↔ skew-symmetric; diffusion ↔ symmetric, positive definite. Such a symmetry-preserving discretisation is stable on any grid and conserves mass, momentum and kinetic energy if the dissipation is turned off. First, the results of a second-order and a fourth-order, symmetry-preserving discretisation are compared for a fully developed, turbulent flow in a plane channel. The more accurate fourth-order method is applied to perform a numerical simulation of turbulent flow and heat transfer in a channel, where a matrix of cubes is mounted at one wall. Here, the temperature is treated as a passive scalar. The Reynolds number (based on the channel width and the mean bulk velocity) is equal to Re = 13, 000. The results of the numerical simulation agree well with the available experimental data.
机译:具有表面安装的立方障碍物的通道中的湍流和热传递形成了在许多工程应用中(例如在冷却设备的设计中)发生的问题的一般示例。我们没有使用任何湍流模型就对其进行了数值模拟。这种方法是计算复杂湍流的最准确方法,也是最昂贵的方法,因为所有动态有效尺度的运动都需要从不稳定的,不可压缩的Navier-Stokes方程和能量方程中进行数值求解。考虑到计算复杂性,我们首先要考虑的是尽可能地减少计算成本。我们离散对流算子和扩散算子,使它们的频谱特性得以保留,即对流↔斜对称;扩散↔对称,正定。这样的保持对称性离散化在任何网格上都是稳定的,并且如果关闭了耗散,则可以节省质量,动量和动能。首先,比较平面通道中完全展开的湍流的二阶和四阶保对称性离散化的结果。应用更精确的四阶方法对通道中的湍流和传热进行数值模拟,在该通道中,一个立方体矩阵安装在一个壁上。在此,温度被视为被动标量。雷诺数(基于通道宽度和平均体积速度)等于Re = 13,000。数值模拟的结果与可用的实验数据非常吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号