首页> 外文OA文献 >A Classification Rules Mining Method based on Dynamic Rules' Frequency
【2h】

A Classification Rules Mining Method based on Dynamic Rules' Frequency

机译:基于动态规则频率的分类规则挖掘方法

摘要

Rule based classification or rule induction (RI) in data mining is an approach that normally generates classifiers containing simple yet effective rules. Most RI algorithms suffer from few drawbacks mainly related to rule pruning and rules sharing training data instances. In response to the above two issues, a new dynamic rule induction (DRI) method is proposed that utilises two thresholds to minimise the items search space. Whenever a rule is generated, DRI algorithm ensures that all candidate items' frequencies are updated to reflect the deletion of the rule’s training data instances. Therefore, the remaining candidate items waiting to be added to other rules have dynamic frequencies rather static. This enables DRI to generate not only rules with 100% accuracy but rules with high accuracy as well. Experimental tests using a number of UCI data sets have been conducted using a number of RI algorithms. The results clearly show competitive performance in regards to classification accuracy and classifier size of DRI when compared to other RI algorithms.
机译:数据挖掘中基于规则的分类或规则归纳(RI)是一种通常会生成包含简单但有效规则的分类器的方法。大多数RI算法的缺点很少,主要涉及规则修剪和规则共享训练数据实例。针对上述两个问题,提出了一种新的动态规则归纳(DRI)方法,该方法利用两个阈值来最小化项目搜索空间。每当生成规则时,DRI算法都会确保更新所有候选项目的频率,以反映出该规则的训练数据实例的删除。因此,等待添加到其他规则的其余候选项具有动态频率,而不是静态的。这使DRI不仅可以生成100%精度的规则,而且还可以生成高精度的规则。已经使用许多RI算法进行了使用许多UCI数据集的实验测试。与其他RI算法相比,结果清楚地显示了在DRI的分类准确性和分类器大小方面的竞争性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号