首页> 外文OA文献 >An adaptive multi-swarm optimizer for dynamic optimization problems
【2h】

An adaptive multi-swarm optimizer for dynamic optimization problems

机译:用于动态优化问题的自适应多群优化器

摘要

The multi-population method has been widely used to solve dynamic optimization problems (DOPs) with the aim of maintaining multiple populations on different peaks to locate and track multiple changing optima simultaneously. However, to make this approach effective for solving DOPs, two challenging issues need to be addressed. They are how to adapt the number ofudpopulations to changes and how to adaptively maintain the population diversity in a situation where changes are complicated or hard to detect or predict. Tracking the changing global optimum in dynamic environments is difficult because we cannot know when and where changes occur and what the characteristics of changes would be. Therefore, it is necessary to take theudchallenging issues into account to design such adaptive algorithms. To address the issues when multi-population methods are applied for solving DOPs, this paper proposes an adaptive multi-swarm algorithm, where the populations are enabled to be adaptive in dynamic environments without change detection. An experimental study is conducted based on the moving peaks problem to investigate the behavior of the proposed method. The performance of the proposed algorithm is also compared with a set of algorithms that are based on multi-population methods from different research areas in the literature of evolutionary computation.
机译:多种群方法已被广泛用于解决动态优化问题(DOP),目的是在不同的峰上保持多个种群以同时定位和跟踪多个变化的最优值。但是,要使该方法有效地解决DOP,需要解决两个具有挑战性的问题。它们是如何在变化复杂,难以检测或预测的情况下适应人口过剩的数量以及如何适应性地维持种群多样性。在动态环境中跟踪变化的全局最优值非常困难,因为我们无法知道何时何地发生变化以及变化的特征。因此,有必要考虑挑战性的问题来设计这样的自适应算法。为了解决采用多种群方法求解DOP时的问题,本文提出了一种自适应多群算法,该算法使种群能够在动态环境中适应变化而无需检测变化。基于移动峰问题进行了实验研究,以研究该方法的行为。还将所提出算法的性能与一组基于进化计算文献中不同研究领域的多种群方法的算法进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号