首页> 外文OA文献 >A Machine Learning Approach for MicroRNA Precursor Prediction in Retro-transcribing Virus Genomes
【2h】

A Machine Learning Approach for MicroRNA Precursor Prediction in Retro-transcribing Virus Genomes

机译:逆转录病毒基因组中MicroRNA前体预测的机器学习方法。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Identification of microRNA (miRNA) precursors has seen increased efforts in recent years. The difficulty in experimental detection of pre-miRNAs increased the usage of computational approaches. Most of these approaches rely on machine learning especially classification. In order to achieve successful classification, many parameters need to be considered such as data quality, choice of classifier settings, and feature selection. For the latter one, we developed a distributed genetic algorithm on HTCondor to perform feature selection. Moreover, we employed two widely used classification algorithms libSVM and random forest with different settings to analyze the influence on the overall classification performance. In this study we analyzed 5 human retro virus genomes; Human endogenous retrovirus K113, Hepatitis B virus (strain ayw), Human T lymphotropic virus 1, Human T lymphotropic virus 2, Human immunodeficiency virus 2, and Human immunodeficiency virus 1. We then predicted pre-miRNAs by using the information from known virus and human pre-miRNAs. Our results indicate that these viruses produce novel unknown miRNA precursors which warrant further experimental validation.
机译:近年来,microRNA(miRNA)前体的鉴定工作日趋增多。实验检测pre-miRNA的困难增加了计算方法的使用。这些方法大多数依赖于机器学习,尤其是分类。为了实现成功的分类,需要考虑许多参数,例如数据质量,分类器设置的选择和功能选择。对于后者,我们在HTCondor上开发了一种分布式遗传算法来执行特征选择。此外,我们采用了两种广泛使用的分类算法libSVM和具有不同设置的随机森林来分析对整体分类性能的影响。在这项研究中,我们分析了5个人类逆转录病毒基因组。人类内源性逆转录病毒K113,乙型肝炎病毒(ayw株),人类T淋巴病毒1,人类T淋巴病毒2,人类免疫缺陷病毒2和人类免疫缺陷病毒1。然后,我们利用已知病毒和人类pre-miRNA。我们的结果表明,这些病毒产生了新型未知的miRNA前体,需要进一步的实验验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号