首页> 外文OA文献 >Clustering of gene expression profiles: creating initialization-independent clusterings by eliminating unstable genes
【2h】

Clustering of gene expression profiles: creating initialization-independent clusterings by eliminating unstable genes

机译:基因表达谱的聚类:通过消除不稳定的基因来创建与初始化无关的聚类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Clustering is an important approach in the analysis of biological data, and often a first step to identify interesting patterns of coexpression in gene expression data. Because of the high complexity and diversity of gene expression data, many genes cannot be easily assigned to a cluster, but even if the dissimilarity of these genes with all other gene groups is large, they will finally be forced to become member of a cluster. In this paper we show how to detect such elements, called unstable elements. We have developed an approach for iterative clustering algorithms in which unstable elements are deleted, making the iterative algorithm less dependent on initial centers. Although the approach is unsupervised, it is less likely that the clusters into which the reduced data set is subdivided contain false positives. This clustering yields a more differentiated approach for biological data, since the cluster analysis is divided into two parts: the pruned data set is divided into highly consistent clusters in an unsupervised way and the removed, unstable elements for which no meaningful cluster exists in unsupervised terms can be given a cluster with the use of biological knowledge and information about the likelihood of cluster membership. We illustrate our framework on both an artificial and real biological data set.
机译:聚类是生物学数据分析中的重要方法,通常是识别基因表达数据中有趣的共表达模式的第一步。由于基因表达数据的高度复杂性和多样性,许多基因不能轻易分配到一个簇中,但是即使这些基因与所有其他基因组的相异性很大,它们最终也将被迫成为一个簇的成员。在本文中,我们展示了如何检测这种称为不稳定元素的元素。我们已经为迭代聚类算法开发了一种方法,该方法中删除了不稳定元素,使得迭代算法对初始中心的依赖性降低。尽管该方法不受监督,但将精简数据集细分为的群集不太可能包含误报。这种聚类为生物数据提供了一种更具差异性的方法,因为聚类分析分为两个部分:修剪后的数据集以无监督的方式分为高度一致的聚类,而除去的不稳定元素则以无监督的方式不存在有意义的聚类可以利用生物学知识和有关集群成员可能性的信息来给集群一个集群。我们在人工和真实生物数据集上说明了我们的框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号