首页> 外文OA文献 >An extension of the aspect PLSA model to active and semi-supervised learning for text classification
【2h】

An extension of the aspect PLSA model to active and semi-supervised learning for text classification

机译:将方面PLSA模型扩展到用于文本分类的主动和半监督学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we address the problem of learning aspect models with partially labeled examples. We propose a method which benefits from both semi-supervised and active learning frameworks. In particular, we combine a semi-supervised extension of the PLSA algorithm with two active learning techniques. We perform experiments over four different datasets and show the effectiveness of the combination of the two frameworks.
机译:在本文中,我们通过部分标记的示例解决了学习方面模型的问题。我们提出一种受益于半监督和主动学习框架的方法。特别是,我们将PLSA算法的半监督扩展与两种主动学习技术结合在一起。我们对四个不同的数据集进行了实验,并展示了这两个框架相结合的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号