首页> 外文OA文献 >A System for a Hand Gesture-Manipulated Virtual Reality Environment
【2h】

A System for a Hand Gesture-Manipulated Virtual Reality Environment

机译:用于手势操作的虚拟现实环境的系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Extensive research has been done using machine learning techniques for hand gesture recognition (HGR) using camera-based devices; such as the Leap Motion Controller (LMC). However, limited research has investigated machine learning techniques for HGR in virtual reality applications (VR). This paper reports on the design, implementation, and evaluation of a static HGR system for VR applications using the LMC. The gesture recognition system incorporated a lightweight feature vector of five normalized tip-to-palm distances and a k-nearest neighbour (kNN) classifier. The system was evaluated in terms of response time, accuracy and usability using a case-study VR stellar data visualization application created in the Unreal Engine 4. An average gesture classification time of 0.057ms with an accuracy of 82.5% was achieved on four distinct gestures, which is comparable with previous results from Sign Language recognition systems. This shows the potential of HGR machine learning techniques applied to VR, which were previously applied to non-VR scenarios such as Sign Language recognition.
机译:使用基于相机的设备的机器学习技术进行手势识别(HGR)的研究已经广泛开展;例如Leap Motion控制器(LMC)。然而,有限的研究已经研究了虚拟现实应用(VR)中用于HGR的机器学习技术。本文报告了使用LMC为VR应用程序设计的静态HGR系统的设计,实现和评估。手势识别系统合并了一个轻量级特征向量,该特征向量具有五个归一化的笔尖到手掌的距离和一个k最近邻(kNN)分类器。使用在虚幻引擎4中创建的案例研究VR恒星数据可视化应用程序对系统的响应时间,准确性和可用性进行了评估。在四个不同的手势上,平均手势分类时间为0.057ms,准确度为82.5%。 ,与手语识别系统先前的结果相当。这显示了将HGR机器学习技术应用于VR的潜力,该技术先前已应用于非VR场景,例如手语识别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号