首页> 外文OA文献 >A Multi-Source Strategy based on a Learning-by-Examples Technique for Buried Object Detection
【2h】

A Multi-Source Strategy based on a Learning-by-Examples Technique for Buried Object Detection

机译:基于实例学习技术的掩埋物体检测多源策略

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the framework of buried object detection and subsurface sensing, some of the main difficulties in the reconstruction process are certainly due to the aspect-limited nature of available measurement data and to the requirement of an on-line reconstruction. To limit these problems, a multi-source (MS) learning-by-example (LBE) technique is proposed in this paper. In order to fully exploit the more attractive features of the MS strategy, the proposed approach is based on a support vector machine (SVM). The effectiveness of the MS-LBE technique is evaluated by comparing the achieved results with those obtained by means of a previously developed single-source (SS) SVM-based procedure for an ideal as well as a noisy enviroment.
机译:在掩埋物体检测和地下传感的框架中,重建过程中的一些主要困难当然是由于可用测量数据的方面有限,并且需要在线重建。为了限制这些问题,本文提出了一种多源(MS)的示例学习(LBE)技术。为了充分利用MS策略的更具吸引力的功能,建议的方法基于支持向量机(SVM)。通过比较获得的结果与通过先前开发的基于单源(SS)SVM的过程获得的理想结果和嘈杂环境所获得的结果,来评估MS-LBE技术的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号