首页> 外文OA文献 >An Efficient and Exact Stochastic Simulation Method to Analyze Rare Events in Biochemical Systems
【2h】

An Efficient and Exact Stochastic Simulation Method to Analyze Rare Events in Biochemical Systems

机译:一种高效,精确的随机模拟方法,用于分析生化系统中的稀有事件

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In robust biological systems, wide deviations from highly controlled normal behavior may be rare, yet they may result in catastrophic complications. While in silico analysis has gained an appreciation as a tool to offer insights into systems-level properties of biological systems, analysis of such rare events provides a particularly challenging computational problem. This paper proposes an efficient stochastic simulation method to analyze rare events in biochemical systems. Our new approach can substantially increase the frequency of the rare events of interest by appropriately manipulating the underlying probability measure of the system, allowing high-precision results to be obtained with substantially fewer simulation runs than the conventional direct Monte Carlo simulation. Here, we show the algorithm of our new ap- proach, and we apply it to the analysis of rare deviant transitions of two systems, resulting in several orders of magnitude speedup in generating high-precision estimates compared with the conventional Monte Carlo simulation. This is the preliminary version of a paper that was published in Journal of Chemical Physics. The original publication is available at http://jcp.aip.org/jcp/top.jsp
机译:在健壮的生物系统中,与高度受控的正常行为大相径庭的情况可能很少见,但它们可能会导致灾难性的并发症。尽管计算机分析已作为一种了解生物系统的系统级属性的工具而受到赞赏,但对此类罕见事件的分析却带来了特别具有挑战性的计算问题。本文提出了一种有效的随机模拟方法来分析生化系统中的稀有事件。我们的新方法可以通过适当地控制系统的潜在概率度量来显着提高感兴趣的稀有事件的发生频率,从而与传统的直接蒙特卡洛模拟相比,可以用更少的模拟次数获得高精度的结果。在这里,我们展示了我们新方法的算法,并将其应用于两个系统的罕见偏差变迁的分析,与传统的蒙特卡洛模拟相比,在生成高精度估算值时,其速度提高了几个数量级。这是发表在《化学物理学杂志》上的论文的初步版本。原始出版物可从http://jcp.aip.org/jcp/top.jsp获得。

著录项

  • 作者

    Kuwahara Hiroyuki; Mura Ivan;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号