首页> 外文OA文献 >Unsupervised Methods for Anomalies Detection through Intelligent Monitoring Systems
【2h】

Unsupervised Methods for Anomalies Detection through Intelligent Monitoring Systems

机译:通过智能监控系统检测异常情况的无监督方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The success of intelligent diagnosis systems normally depends on the knowledge about the failures present on monitored systems. This knowledge can be modelled in several ways, such as by means of rules or probabilistic models. These models are validated by checking the system output fit to the input in a supervised way. However, when there is no such knowledge or when it is hard to obtain a model of it, it is alternatively possible to use an unsupervised method to detect anomalies and failures. Different unsupervised methods (HCL, K-Means, SOM) have been used in present work to identify abnormal behaviours on the system being monitored. This approach has been tested into a real-world monitored system related to the railway domain, and the results show how it is possible to successfully identify new abnormal system behaviours beyond those previously modelled well-known problems.
机译:智能诊断系统的成功通常取决于对受监视系统上出现的故障的了解。可以以多种方式对这种知识进行建模,例如通过规则或概率模型。通过以监督的方式检查系统输出是否适合输入来验证这些模型。但是,当没有这样的知识或很难获得它的模型时,可以选择使用无监督的方法来检测异常和故障。目前的工作中使用了不同的无监督方法(HCL,K-Means,SOM)来识别被监视系统上的异常行为。该方法已在与铁路领域相关的实际监控系统中进行了测试,结果表明,除了先前建模的已知问题之外,如何能够成功识别出新的异常系统行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号