首页> 外文OA文献 >Simultaneous 3D object tracking and camera parameter estimation by Bayesian methods and transdimensional MCMC sampling
【2h】

Simultaneous 3D object tracking and camera parameter estimation by Bayesian methods and transdimensional MCMC sampling

机译:贝叶斯方法和多维MCMC采样同时进行3D对象跟踪和摄像机参数估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multi-camera 3D tracking systems with overlapping cameras represent a powerful mean for scene analysis, as they potentially allow greater robustness than monocular systems and provide useful 3D information about object location and movement. However, their performance relies on accurately calibrated camera networks, which is not a realistic assumption in real surveillance environments. Here, we introduce a multi-camera system for tracking the 3D position of a varying number of objects and simultaneously refin-ing the calibration of the network of overlapping cameras. Therefore, we introduce a Bayesian framework that combines Particle Filtering for tracking with recursive Bayesian estimation methods by means of adapted transdimensional MCMC sampling. Addi-tionally, the system has been designed to work on simple motion detection masks, making it suitable for camera networks with low transmission capabilities. Tests show that our approach allows a successful performance even when starting from clearly inaccurate camera calibrations, which would ruin conventional approaches.
机译:具有重叠摄像机的多摄像机3D跟踪系统代表了场景分析的强大手段,因为它们可能比单眼系统具有更高的鲁棒性,并提供有关对象位置和移动的有用3D信息。但是,它们的性能依赖于经过精确校准的摄像机网络,这在实际的监视环境中并不是一个现实的假设。在这里,我们介绍了一种多相机系统,该系统可以跟踪不同数量对象的3D位置,并同时完善重叠相机网络的校准。因此,我们介绍了一种贝叶斯框架,该框架结合了粒子滤波和用于跟踪的贝叶斯估计方法,并采用了自适应的多维MCMC采样方法。此外,该系统还设计为可在简单的运动检测掩模上工作,使其适用于传输能力较低的摄像机网络。测试表明,即使从明显不准确的相机校准开始,我们的方法也可以取得成功的性能,这将破坏传统方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号