首页> 外文OA文献 >Foreground segmentation in depth imagery using depth and spatial dynamic models for video surveillance applications
【2h】

Foreground segmentation in depth imagery using depth and spatial dynamic models for video surveillance applications

机译:使用深度和空间动态模型进行视频监控应用的深度图像中的前景分割

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Low-cost systems that can obtain a high-quality foreground segmentation almostindependently of the existing illumination conditions for indoor environments are verydesirable, especially for security and surveillance applications. In this paper, a novelforeground segmentation algorithm that uses only a Kinect depth sensor is proposedto satisfy the aforementioned system characteristics. This is achieved by combininga mixture of Gaussians-based background subtraction algorithm with a new Bayesiannetwork that robustly predicts the foreground/background regions between consecutivetime steps. The Bayesian network explicitly exploits the intrinsic characteristics ofthe depth data by means of two dynamic models that estimate the spatial and depthevolution of the foreground/background regions. The most remarkable contribution is thedepth-based dynamic model that predicts the changes in the foreground depth distributionbetween consecutive time steps. This is a key difference with regard to visible imagery,where the color/gray distribution of the foreground is typically assumed to be constant.Experiments carried out on two different depth-based databases demonstrate that theproposed combination of algorithms is able to obtain a more accurate segmentation of theforeground/background than other state-of-the art approaches.
机译:几乎可以独立于室内环境的现有照明条件而获得高质量前景分割的低成本系统是非常理想的,尤其是对于安全和监视应用而言。为了满足上述系统特性,提出了一种仅使用Kinect深度传感器的新型前景分割算法。这是通过将基于高斯的背景减法算法的混合与新的贝叶斯网络相结合来实现的,该新的贝叶斯网络能够可靠地预测连续时间步长之间的前景/背景区域。贝叶斯网络通过两个动态模型来显式地利用深度数据的内在特征,这两个动态模型估计了前景/背景区域的空间和深度演化。最杰出的贡献是基于深度的动态模型,该模型可以预测连续时间步长之间的前景深度分布的变化。这是在可见图像方面的一个关键差异,在可见图像中,通常假定前景的颜色/灰色分布是恒定的。在两个不同的基于深度的数据库上进行的实验表明,所提出的算法组合能够获得更准确的结果。与其他现有技术相比,对前景/背景进行了细分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号