首页> 外文OA文献 >Random-modulation differential absorption lidar based on semiconductor lasers and single photon counting for atmospheric CO2 sensing
【2h】

Random-modulation differential absorption lidar based on semiconductor lasers and single photon counting for atmospheric CO2 sensing

机译:基于半导体激光器和单光子计数的随机调制差分吸收激光雷达,用于大气CO2传感

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Carbon dioxide (CO2) is the major anthropogenic greenhouse gas contributing to global warming and climate change. Its concentration has recently reached the 400-ppm mark, representing a more than 40 % increase with respect to its level prior to the industrial revolution. However, the exchanges of CO2 between the atmosphere and the natural or anthropogenic sources/sinks at the Earth’s surface are still poorly quantified. A better understanding of these surface fluxes is required for appropriate policy making. At present, the concentrations of CO2 are mainly measured in-situ at a number of surface stations that are unevenly distributed over the planet. Air-borne and spaceborne missions have the potential to provide a denser and better distributed set of observations to complement this network. In addition to passive measurement techniques, the integrated path differential absorption (IPDA) lidar technique [1] has been found to be potentially suited for fulfilling the stringent observational requirements. It uses strong CO2 absorption lines in the 1.57 or in the 2 μm region and the backscatter from the ground or a cloud top to measure the column averaged CO2 mixing ratio (XCO2) with high precision and accuracy. The European Space Agency (ESA), has studied this concept in the frame of the Advanced Space Carbon and Climate Observation of Planet Earth (A-SCOPE) mission in 2006. Although a lack of technological readiness prevented its selection for implementation, recommendations have been formulated to mature the instrument concept by pursuing technological efforts [2]. During the last years, a tremendous effort in the assessment of the optimal CO2 active sensing methodology is being performed in the context of NASA mission Active Sensing of CO2 Emissions over Nights, Days, and Season (ASCENDS)
机译:二氧化碳(CO2)是造成全球变暖和气候变化的主要人为温室气体。它的浓度最近达到了400ppm的水平,比工业革命之前的浓度增加了40%以上。但是,大气与地球表面的自然或人为来源/汇之间的CO2交换仍然很难量化。为了制定适当的政策,需要更好地了解这些表面通量。目前,CO2的浓度主要是在许多不均匀分布在地球上的地面站进行的。空中和太空任务有可能提供更密集,分布更好的观测资料,以补充这一网络。除无源测量技术外,还发现集成路径差分吸收(IPDA)激光雷达技术[1]可能适合满足严格的观测要求。它使用1.57或2μm区域中强大的CO2吸收线以及从地面或云顶的反向散射,以高精度和高精度测量色谱柱平均CO2混合比(XCO2)。欧洲航天局(ESA)在2006年高级太空碳和行星地球气候观测(A-SCOPE)任务的框架内研究了这一概念。尽管缺乏技术就绪性阻止了其选择实施,但仍提出了一些建议。致力于通过技术努力来成熟仪器概念[2]。在过去的几年中,在NASA任务的背景下,在评估最佳的CO2主动传感方法方面付出了巨大的努力,该任务是对夜晚,白天和季节的CO2排放进行主动传感(ASCENDS)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号