首页> 外文OA文献 >Modelling temporal patterns using soft computing techniques. Application to the analysis of human body movementsud
【2h】

Modelling temporal patterns using soft computing techniques. Application to the analysis of human body movementsud

机译:使用软计算技术对时间模式进行建模。在人体运动分析中的应用 ud

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many signals obtained from the real world, including the ones captured from the human body, present different events repeated recurrently. When these events possess some common features repeated in time, we call them “temporal patterns”. Examples of these temporal patterns can be the electrocardiogram waveform or the accelerations of the human body during the gait. This thesis proposes different techniques to model these temporal patterns and to detect their presence in a given signal. Due to the fact that these signals usually present a high variability in its shape and duration, we have applied different concepts and techniques from Soft Computing since they are able to deal with this variability. In general terms, two different approaches has been studied in this thesis:udud• Prediction-Error-Classification approach. It consists of generating a signal predictor for each pattern and using the errors produced by each predictor to determine the class of a given signal.ud• Fuzzy Finite Automata approach. The pattern is considered as a sequence of events which are modelled by an automaton. udAfterwards, this automaton is used to detect patterns in a given signal.ududThe performance of our proposed techniques has been tested on synthetic signals and on the analysis of the movements of human body.ud
机译:从现实世界获得的许多信号,包括从人体捕获的信号,都呈现出反复重复的不同事件。当这些事件具有随时间重复的某些共同特征时,我们称它们为“时间模式”。这些时间模式的示例可以是心电图波形或步态期间人体的加速度。本文提出了不同的技术来对这些时间模式进行建模并检测给定信号中它们的存在。由于这些信号通常会在其形状和持续时间上呈现出高度的可变性,因此我们采用了软计算公司的不同概念和技术,因为它们能够处理这种可变性。概括而言,本文研究了两种不同的方法: ud ud•预测错误分类方法。它包括为每个模式生成信号预测器,并使用每个预测器产生的误差来确定给定信号的类别。 ud•模糊有限自动机方法。模式被视为由自动机建模的事件序列。 ud此后,该自动机用于检测给定信号中的模式。 ud ud我们提出的技术的性能已在合成信号和人体运动分析上进行了测试。

著录项

  • 作者

    Bailador del Pozo Gonzalo;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号