首页> 外文OA文献 >Development of a Dashboard for Sentiment Analysis of Football in Twitter based on Web Components and D3.js
【2h】

Development of a Dashboard for Sentiment Analysis of Football in Twitter based on Web Components and D3.js

机译:基于Web组件和D3.js的Twitter足球情感分析仪表板的开发

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis is the result of a project whose objective has been to develop and deploy a dashboard for sentiment analysis of football in Twitter based on web components andudD3.js.udTo do so, a visualisation server has been developed in order to present the data obtained from Twitter and analysed with Senpy. This visualisation server has been developed with Polymer web components and D3.js.udData mining has been done with a pipeline between Twitter, Senpy and ElasticSearch.udLuigi have been used in this process because helps building complex pipelines of batch jobs, so it has analysed all tweets and stored them in ElasticSearch.udTo continue, D3.js has been used to create interactive widgets that make data easily accessible, this widgets will allow the user to interact with them and �filter the most interesting data for him. Polymer web components have been used to make this dashboard according to Google's material design and be able to show dynamic data in widgets.udAs a result, this project will allow an extensive analysis of the social network, pointing out the influence of players and teams and the emotions and sentiments that emerge in a lapse of time.
机译:这篇论文是一个项目的结果,该项目的目标是基于Web组件和 udD3.js开发并部署一个仪表板,用于Twitter足球情绪分析。为此,开发了一个可视化服务器以显示从Twitter获得的数据并由Senpy分析。此可视化服务器已使用Polymer Web组件和D3.js开发。 udData挖掘已通过Twitter,Senpy和ElasticSearch之间的管道完成。 udLuigi已用于此过程中,因为它有助于构建批处理作业的复杂管道,因此它已经分析了所有推文并将其存储在ElasticSearch中。 ud要继续,D3.js已用于创建交互式小部件,使数据易于访问,该小部件将允许用户与其交互并为他过滤最有趣的数据。聚合物网络组件已根据Google的材料设计用于制作此仪表板,并能够在小部件中显示动态数据。 ud因此,该项目将允许对社交网络进行广泛的分析,指出参与者和团队的影响以及随着时间流逝而出现的情绪和情感。

著录项

  • 作者

    Pascual Saavedra Alberto;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号