首页> 外文OA文献 >Hydrodynamic stability theory of double ablation front structures in inertial confinement fusion.
【2h】

Hydrodynamic stability theory of double ablation front structures in inertial confinement fusion.

机译:惯性约束融合中双烧蚀前部结构的水动力稳定性理论。

摘要

The aim of inertial confinement fusion is the production of energy by the fusion of thermonuclear fuel (deuterium-tritium) enclosed in a spherical target due to its implosion. In the direct-drive approach, the energy needed to spark fusion reactions is delivered by the irradiation of laser beams that leads to the ablation of the outer shell of the target (the so-called ablator). As a reaction to this ablation process, the target is accelerated inwards, and, provided that this implosion is sufficiently strong a symmetric, the requirements of temperature and pressure in the center of the target are achieved leading to the ignition of the target (fusion). One of the obstacles capable to prevent appropriate target implosions takes place in the ablation region where any perturbation can grow even causing the ablator shell break, due to the ablative Rayleigh-Taylor instability. The ablative Rayleigh-Taylor instability has been extensively studied throughout the last 40 years in the case where the density/temperature profiles in the ablation region present a single front (the ablation front). Single ablation fronts appear when the ablator material has a low atomic number (deuterium/tritium ice, plastic). In this case, the main mechanism of energy transport from the laser energy absorption region (low density plasma) to the ablation region is the electron thermal conduction. However, recently, the use of materials with a moderate atomic number (silica, doped plastic) as ablators, with the aim of reducing the target pre-heating caused by suprathermal electrons generated by the laser-plasma interaction, has demonstrated an ablation region composed of two ablation fronts. This fact appears due to increasing importance of radiative effects in the energy transport. The linear theory describing the Rayleigh-Taylor instability for single ablation fronts cannot be applied for the stability analysis of double ablation front structures. Therefore, the aim of this thesis is to develop, for the first time, a linear stability theory for this type of hydrodynamic structures.
机译:惯性约束聚变的目的是通过将热核燃料(氘-tri)由于其内爆而封闭在球形靶中,从而产生能量。在直接驱动方法中,火花聚变反应所需的能量是通过激光束的照射来传递的,从而导致靶材外壳的烧蚀(所谓的烧蚀剂)。作为对这种消融过程的反应,靶向内加速,并且,如果该内爆足够强,则可以达到靶中心的温度和压力要求,从而导致靶的点火(熔化) 。能够防止适当的目标内爆的障碍之一发生在烧蚀区域,在该区域,由于烧蚀的瑞利-泰勒不稳定性,任何扰动都会加剧,甚至导致烧蚀器壳体破裂。在过去40年中,在消融区域中的密度/温度曲线呈现单一前沿(消融前沿)的情况下,对消融瑞利-泰勒不稳定性进行了广泛研究。当烧蚀剂材料的原子序数较低(氘/ tri冰,塑料)时,会出现单个烧蚀前沿。在这种情况下,从激光能量吸收区域(低密度等离子体)到消融区域的能量传输的主要机理是电子热传导。然而,近来,为了降低由激光-等离子体相互作用产生的超热电子引起的目标预热,使用具有中等原子序数的材料(二氧化硅,掺杂塑料)作为烧蚀剂已证明了由以下组成的烧蚀区域:两个消融锋线​​。由于辐射效应在能量传输中的重要性日益增加,因此出现了这一事实。描述单烧蚀锋面的瑞利-泰勒不稳定性的线性理论不能用于双烧蚀锋面结构的稳定性分析。因此,本论文的目的是首次为这类流体动力结构建立线性稳定性理论。

著录项

  • 作者

    Yáñez Vico Carlos;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 spa
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号