首页> 外文OA文献 >Improved 2D-to-3D video conversion by fusing optical flow analysis and scene depth learning
【2h】

Improved 2D-to-3D video conversion by fusing optical flow analysis and scene depth learning

机译:通过融合光流分析和场景深度学习来改善2D到3D视频转换

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract:udAutomatic 2D-to-3D conversion aims to reduce the existing gap between the scarce 3D content and the incremental amount of displays that can reproduce this 3D content. Here, we present an automatic 2D-to-3D conversion algorithm that extends the functionality of the most of the existing machine learning based conversion approaches to deal with moving objects in the scene, and not only with static backgrounds. Under the assumption that images with a high similarity in color have likely a similar 3D structure, the depth of a query video sequence is inferred from a color + depth training database. First, a depth estimation for the background of each image of the query video is computed adaptively by combining the depths of the most similar images to the query ones. Then, the use of optical flow enhances the depth estimation of the different moving objects in the foreground. Promising results have been obtained in a public and widely used database.
机译:摘要: ud自动2D到3D转换旨在缩小稀缺的3D内容和可再现此3D内容的显示增量之间的现有差距。在这里,我们提出了一种自动的2D到3D转换算法,该算法扩展了大多数现有的基于机器学习的转换方法的功能,以处理场景中的运动对象,而不仅仅是静态背景。在颜色具有高度相似性的图像可能具有相似的3D结构的假设下,可从颜色+深度训练数据库中推断出查询视频序列的深度。首先,通过将最相似图像的深度与查询图像的深度进行组合,自适应地计算查询视频每个图像背景的深度估计。然后,光流的使用增强了前景中不同移动物体的深度估计。在公共且广泛使用的数据库中获得了可喜的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号