首页> 外文OA文献 >Adaptation of speaker-specific bases in non-negative matrix factorization forudsingle channel speech-music separation
【2h】

Adaptation of speaker-specific bases in non-negative matrix factorization forudsingle channel speech-music separation

机译:非负矩阵因式分解中针对说话人的基础的适应单通道语音音乐分离

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper introduces a speaker adaptation algorithm for nonnegative matrix factorization (NMF) models. The proposed adaptation algorithm is a combination of Bayesian and subspace model adaptation. The adapted model is used to separate speech signal from a background music signal in a single record. Training speech data for multiple speakers is used with NMF to train a set of basis vectors as a general model for speech signals. The probabilistic interpretation of NMF is used to achieve Bayesian adaptation to adjust the general model with respect to the actual properties of the speech signals that is observed in the mixed signal. The Bayesian adapted model is adapted again by a linear transform, which changes the subspace that the Bayesian adapted model spans to better match the speech signal that is in the mixed signal. The experimental results show that combining Bayesian with linear transform adaptation improves the separation results.
机译:本文介绍了用于非负矩阵分解(NMF)模型的说话人自适应算法。提出的自适应算法是贝叶斯和子空间模型自适应的组合。改编的模型用于在单个记录中将语音信号与背景音乐信号分离。 NMF使用针对多个扬声器的训练语音数据与NMF一起训练一组基本向量,作为语音信号的通用模型。 NMF的概率解释用于实现贝叶斯自适应,以针对在混合信号中观察到的语音信号的实际属性调整一般模型。通过线性变换再次适应贝叶斯适应模型,该线性变换改变了贝叶斯适应模型跨越的子空间,以更好地匹配混合信号中的语音信号。实验结果表明,贝叶斯与线性变换自适应相结合可以改善分离效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号