首页> 外文OA文献 >Biomedical image time series registration with particle filtering (Parçacık süzgeci ile biyomedikal görüntü zaman serisi çakıştırma)
【2h】

Biomedical image time series registration with particle filtering (Parçacık süzgeci ile biyomedikal görüntü zaman serisi çakıştırma)

机译:带粒子滤波的生物医学图像时间序列配准

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose a family of methods for biomedical image time series registration based on Particle filtering. The first method applies an intensity-based information-theoretic approach to calculate importance weights. An effective second group of methods use landmark-based approaches for the same purpose by automatically detecting intensity maxima or SIFT interest points from image time series. A brute-force search for the best alignment usually produces good results with proper cost functions, but becomes computationally expensive if the whole search space is explored. Hill climbing optimizations seek local optima. Particle filtering avoids local solutions by introducing randomness and sequentially updating the posterior distribution representing probable solutions. Thus, it can be more robust for the registration of image time series. We show promising preliminary results on dendrite image time series.
机译:我们提出了一系列基于粒子滤波的生物医学图像时间序列配准方法。第一种方法应用基于强度的信息理论方法来计算重要性权重。第二组有效的方法通过从图像时间序列自动检测强度最大值或SIFT兴趣点,将基于地标的方法用于相同目的。对于最佳对齐方式的蛮力搜索通常会产生具有适当成本函数的良好结果,但如果对整个搜索空间进行探索,则计算量会很大。爬山优化寻求局部最优。粒子滤波通过引入随机性并顺序更新表示可能解的后验分布来避免局部解。因此,它对于图像时间序列的配准会更加健壮。我们在树突图像时间序列上显示出令人鼓舞的初步结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号