首页> 外文OA文献 >Distributed data association for multi-target tracking in sensor networks
【2h】

Distributed data association for multi-target tracking in sensor networks

机译:分布式数据关联,用于传感器网络中的多目标跟踪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Associating sensor measurements with target tracks is a fundamental and challenging problem in multi-target tracking. The problem is even moreudchallenging in the context of sensor networks, since association is coupledudacross the network, yet centralized data processing is in generaludinfeasible due to power and bandwidth limitations. Hence efficient, distributed solutions are needed. We propose techniques based on graphical models to efficiently solve such data association problems in sensor networks. Our approach scales well with the number of sensor nodes in the network, and it is well--suited for distributed implementation. Distributed inference is realized by a message--passing algorithm which requires iterative, parallel exchange of information among neighboring nodes on the graph. So as to address trade--offs between inference performance and communication costs, we also propose a communication--sensitive form of message--passing that is capable of achieving near--optimal performance using far less communication. We demonstrate the effectiveness of our approach with experiments on simulated data.
机译:将传感器测量值与目标轨迹相关联是多目标跟踪中的一个基本且具有挑战性的问题。在传感器网络的环境中,这个问题甚至更加难以克服,因为关联是跨网络耦合的,但是由于功率和带宽的限制,集中式数据处理通常是不可行的。因此,需要有效的分布式解决方案。我们提出基于图形模型的技术,以有效解决传感器网络中的此类数据关联问题。我们的方法可以根据网络中传感器节点的数量进行很好的扩展,并且非常适合于分布式实施。分布式推理是通过消息传递算法实现的,该算法要求在图上的相邻节点之间进行迭代,并行的信息交换。为了解决推理性能和通信成本之间的折衷问题,我们还提出了一种对消息敏感的通信形式的消息传递,该通信可以使用少得多的通信来实现接近最佳的性能。我们通过对模拟数据进行实验来证明我们的方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号