首页> 外文OA文献 >Single channel speech music separation using nonnegative matrix factorizationudwith sliding windows and spectral masks
【2h】

Single channel speech music separation using nonnegative matrix factorizationudwith sliding windows and spectral masks

机译:使用非负矩阵分解的单通道语音音乐分离 ud带有滑动窗和光谱罩

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A single channel speech-music separation algorithm based on nonnegative matrix factorization (NMF) with sliding windows and spectral masks is proposed in this work. We train a set of basis vectors for each source signal using NMF in the magnitude spectral domain. Rather than forming the columns of the matrices to be decomposed by NMF of a single spectral frame, we build them with multiple spectral frames stacked in one column. After observing the mixed signal, NMF is used to decompose its magnitude spectra into a weighted linear combination of the trained basis vectors for both sources. An initial spectrogram estimate for each source is found, and a spectral mask is built using these initial estimates. This mask is used to weight the mixed signal spectrogram to find the contributions of each source signal in the mixed signal. The method is shown to perform better than the conventional NMF approach.
机译:提出了一种基于非负矩阵分解(NMF)的带有滑动窗口和频谱掩码的单通道语音音乐分离算法。我们使用幅度谱域中的NMF为每个源信号训练一组基本向量。与其形成要由单个光谱框架的NMF分解的矩阵的列,不如将它们堆叠在一列中,而是将多个光谱框架构建起来。观察到混合信号后,使用NMF将其幅度谱分解为两个源的训练后基础向量的加权线性组合。找到每个源的初始频谱图估计值,并使用这些初始估计值构建频谱模板。该掩码用于对混合信号频谱图进行加权,以找到混合信号中每个源信号的贡献。该方法显示出比常规NMF方法更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号