首页> 外文OA文献 >A recursive approach to reconstruction of sparse signals Seyrek sinyallerin geri çatimina özyineli bir yaklaşim
【2h】

A recursive approach to reconstruction of sparse signals Seyrek sinyallerin geri çatimina özyineli bir yaklaşim

机译:重构稀疏信号的递归方法对稀疏信号的反向散射的递归方法

摘要

Compressive Sensing (CS) theory details how a sparsely represented signal in a known basis can be reconstructed using less number of measurements. In many practical systems, the observation signal has a sparse representation in a continuous parameter space. This situation rises the possibility of use of the CS reconstruction techniques in the practical problems. In order to utilize CS techniques, the continuous parameter space have to be discretized. This discritization brings the well-known off-grid problem. To prevent the off-grid problem, this study offers a recursive approach which discritizes the parameter space in an adaptive manner. The simulations show that the proposed approach can estimate the parameters with a high accuracy even if targets are closely spaced. © 2014 IEEE.
机译:压缩传感(CS)理论详细说明了如何使用较少数量的测量来重建已知基础上的稀疏表示信号。在许多实际系统中,观察信号在连续参数空间中具有稀疏表示。这种情况增加了在实际问题中使用CS重建技术的可能性。为了利用CS技术,必须离散化连续参数空间。这种区分带来了众所周知的离网问题。为了防止离网问题,本研究提供了一种递归方法,该方法以自适应方式区分参数空间。仿真表明,即使目标之间的距离很近,所提出的方法也可以高精度地估计参数。 ©2014 IEEE。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号