首页> 外文OA文献 >Probabilistic labelling for enhancement of vessel networks applied to retinal images
【2h】

Probabilistic labelling for enhancement of vessel networks applied to retinal images

机译:概率标记以增强应用于视网膜图像的血管网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Occlusive vascular disease affecting arterial circulations is the major and fastest growing health problem worldwide, and underlies common conditions such as heart attack, stroke and peripheral vascular disease. Although vascular diseases may be assessed according to clinical history, screening may be required to evaluate health conditions or courses of treatment. Vasculature in the retina and other organs such as the brain have similar anatomical properties and regulatory mechanisms. Changes in the morphology of retinal vasculature may be associated with vascular-related conditions such as hypertension and stroke. Owing to its high cost-effectiveness, eye fundus photography is often used to study changes in the retinal vasculature.udThis research proposes a probabilistic pixel labelling method based on analysis of local and global features of the image to enhance the detail of vessel structures. Our approach produces a probability map that could be further used by contextual approaches (e.g. Markov Random Fields) for segmenting vessel networks as future application. We first correct contrast variation due to non-uniform illumination and reflections produced by eye tissue using statistical methods to locally estimate the contrast behind vasculature structures.udOur labelling method is based on the Hessian matrix to locally estimate the maximum probability of the principal local curvature—given by eigenvalues—matching an ideal vessel curvature. We defined a realistic model based on imaging physics to produce the ideal vessel curvature governed by the Beer-Lambert Law for estimating the absorption of energy as it is propagated through uniformly filled objects.udThe local maximum posterior probability—based on Bayes’ rule—was eventually estimated by combining the prior (using the proposed background estimation) and the likelihood produced by Monte Carlo simulations. The proposed method in this research was compared with one of the most popular vessel detectors due to Frangi showing similar results.
机译:影响动脉循环的闭塞性血管疾病是世界范围内主要且增长最快的健康问题,是心脏病,中风和周围血管疾病等常见疾病的基础。尽管可以根据临床病史评估血管疾病,但可能需要进行筛查以评估健康状况或治疗过程。视网膜和其他器官(如大脑)中的血管具有类似的解剖学特性和调节机制。视网膜脉管系统形态的变化可能与诸如高血压和中风之类的血管相关疾病有关。由于其高成本效益,眼底照相术通常用于研究视网膜脉管系统的变化。 ud本研究提出了一种基于图像局部和整体特征分析的概率像素标记方法,以增强血管结构的细节。我们的方法产生了一个概率图,可以被上下文方法(例如马尔可夫随机场)进一步用于分割血管网络作为未来的应用。我们首先使用统计方法校正由于眼睛组织产生的不均匀照明和反射而引起的对比度变化,以使用局部统计方法来局部估计脉管结构背后的对比度。 (通过特征值给出)匹配理想的血管曲率。我们基于影像物理学定义了一个现实模型,以产生由比尔朗伯定律控制的理想血管曲率,以估算能量在均匀填充的物体中传播时的吸收。 ud局部最大后验概率(基于贝叶斯定律)最终通过结合先验(使用拟议的背景估计)和蒙特卡洛模拟产生的似然来估计。由于Frangi显示了相似的结果,因此将本研究中提出的方法与最流行的血管检测器之一进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号