首页> 外文OA文献 >ビデオからの移動物体の検出に関する研究
【2h】

ビデオからの移動物体の検出に関する研究

机译:视频中运动物体的检测研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In recent years, the video surveillance system for security and a driving safety system on the car have been growing rapidly. The video surveillance system has grown from a manual system to a fully autonomous system, whereas a driving safety system has evolved from a parking safety system to a collision avoidance system. The system requires a good ability to detect a moving object so as to be a reliable system.The problem that must be addressed in the detection of moving objects on a video is a dynamic background. In this thesis, we proposed a moving object detection method using sequential inference of the background to overcome the problem of the dynamic background. The sequential inference of the background uses a series of previous image frames to create a model of the background image for the current frame. After a background model is obtained, then the background subtraction can be done.The proposed method is applied to the video captured using a static camera and a moving camera. The detection of moving objects in a video captured by a moving camera is not as easy as the case using a static camera. Correspondence of pixels in the current image frame with the pixels of the previous image frame must be known in advance. The background model is formed using a bilinear interpolation of the previous image frame. The judgment of a pixel as the background or the foreground is done by subtracting the model of the background image from the current frame.An important stage in this method is updating normal distribution of the pixels on a background model. A background model is formed based on the value of the normal distribution which is updated with each frame of a video. The originality of this thesis is to propose novel ways of updating the normal distribution to obtain an effective background model.Experiments are performed on several videos. The results show that the proposed method can detect and extract moving objects that appear in a video scene successfully under various situations of the background. The effectiveness of the proposed method is recognized by recall, precision and F measure.
机译:近年来,用于安全性的视频监视系统和汽车上的驾驶安全系统已得到快速发展。视频监视系统已从手动系统发展为完全自主的系统,而驾驶安全系统已从停车安全系统发展为防撞系统。该系统要求具有良好的检测运动对象的能力,以便成为可靠的系统。在检测视频上的运动对象时必须解决的问题是动态背景。本文提出了一种基于背景序列推理的运动目标检测方法,以克服动态背景问题。背景的顺序推断使用一系列先前的图像帧为当前帧创建背景图像模型。在获得背景模型之后,可以进行背景减法。该方法适用于静态相机和动态相机拍摄的视频。检测移动摄像机捕获的视频中的移动对象并不像使用静态摄像机那样容易。当前图像帧中的像素与先前图像帧中的像素的对应关系必须事先知道。使用先前图像帧的双线性插值来形成背景模型。通过从当前帧中减去背景图像的模型来确定像素是背景还是前景。该方法的重要阶段是更新背景模型上像素的正态分布。基于正态分布的值形成背景模型,该正态分布的值随视频的每个帧而更新。本文的创新之处在于提出一种更新正态分布以获得有效背景模型的新颖方法。对多个视频进行了实验。结果表明,所提出的方法能够成功地检测和提取出在各种背景情况下视频场景中出现的运动对象。召回率,精度和F量度都证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号