首页> 外文OA文献 >Wavelet-based nonlinear multiscale decomposition model for electricity load forecasting
【2h】

Wavelet-based nonlinear multiscale decomposition model for electricity load forecasting

机译:基于小波的非线性多尺度电力负荷预测分解模型

摘要

We propose a wavelet multiscale decomposition-based autoregressive approach for the prediction of 1-h ahead load based on historical electricity load data. This approach is based on a multiple resolution decomposition of the signal using the non-decimated or redundant Haar à trous wavelet transform whose advantage is taking into account the asymmetric nature of the time-varying data. There is an additional computational advantage in that there is no need to recompute the wavelet transform (wavelet coefficients) of the full signal if the electricity data (time series) is regularly updated. We assess results produced by this multiscale autoregressive (MAR) method, in both linear and non-linear variants, with single resolution autoregression (AR), multilayer perceptron (MLP), Elman recurrent neural network (ERN) and the general regression neural network (GRNN) models. Results are based on the New South Wales (Australia) electricity load data that is provided by the National Electricity Market Management Company (NEMMCO).
机译:我们提出了一种基于小波多尺度分解的自回归方法,可根据历史用电负荷数据预测1-h提前负荷。该方法基于使用非抽取或冗余Haaràtrous小波变换对信号进行的多分辨率分解,其优点是考虑了时变数据的非对称性质。另外的计算优势在于,如果定期更新电数据(时间序列),则无需重新计算完整信号的小波变换(小波系数)。我们评估此多尺度自回归(MAR)方法在线性和非线性变体中产生的结果,包括单分辨率自回归(AR),多层感知器(MLP),艾尔曼递归神经网络(ERN)和通用回归神经网络( GRNN)模型。结果基于国家电力市场管理公司(NEMMCO)提供的新南威尔士州(澳大利亚)的电力负荷数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号