首页> 外文OA文献 >The Root dynamics of mixed and single species stands in the boreal forest of central and eastern Canada
【2h】

The Root dynamics of mixed and single species stands in the boreal forest of central and eastern Canada

机译:混合物种和单一物种的根系动态位于加拿大中部和东部的北方森林中

摘要

I examined trends of fine root biomass and necromass in different mixed- and single-species stands within the central and eastern regions of the North American boreal forest to determine how annual fine root production, mortality, and decomposition and seasonal patterns of fine root biomass, necromass, and spatial heterogeneity within the soil profile vary with stand species composition. I conducted root excavations in the central region of the North American boreal forest of mature trees of Abies balsamea L., Picea mariana (Mill.) BSP, Pinus banksiana Lamb., and Populus tremuloides Michx. to develop allometric equations relating stem diameter at breast-height and height to coarse root biomass. In the first fine root study, annual fine root production and total fine root biomass in July and October were higher in stands of P. tremuloides, P. mariana, Picea glauca (Moench) Voss, and A. balsamea (mixed-species stands) than relatively pure stands of P. tremuloides (single-species stands). Furthermore, the mixed-species stands had lower horizontal and higher vertical fine root biomass heterogeneity, respectively, compared to the single-species stands. In the second fine root study, annual fine root production and total fine root biomass for most sampling dates (May to October) were higher in both mixed-species stand types (stands of P. banksiana, P. mariana, P. glauca, and A. balsamea (mixed conifer stands) and stands of P. banksiana and P. tremuloides (mixedwood stands)) than the single-species stands (relatively pure stands of P. banksiana (conifer stands)). Furthermore, horizontal fine root biomass heterogeneity was lower in the mixed- than single-species stands in July, August, and September, but similar among the three stand types for the other sampling dates. By contrast, vertical fine root biomass heterogeneity was higher in the mixed conifer than conifer stands from June to September, whereas mixedwood stands differed significantly from conifer stands for only a single sampling date. There were distinct temporal trends of fine root biomass, necromass, and spatial biomass heterogeneity in the second fine root study. Total fine root biomass followed an inverse U-shaped pattern with sampling date (i.e., highest in the summer and lower in spring and fall), while total fine root necromass followed a U-shaped pattern (i.e., lowest in the summer and higher in spring and fall) in all three stand types, respectively. In the two mixed,species stand types, horizontal fine root biomass heterogeneity followed a U-shaped trend with sampling date, while vertical fine root biomass heterogeneity had an inverse U-shaped trend in mixed conifer stands and a U-shaped trend in mixedwood stands, respectively. However, neither horizontal nor vertical fine root biomass heterogeneity differed with sampling date in the conifer stands. The findings of both fine root studies support the theory that the differences in crown structures and rooting traits between component species in the mixed-species and mixed conifer stands in the first and second fine root studies, respectively (niche differentiation), versus increased nutrient availability resulting from the P. tremuloides leaf litter in the mixedwood stands in the second fine root study (facilitation), were promoting greater soil space filling of fine root biomas and fine root productivity in the mixed- than single-species stands for both studies. All regressions for coarse root biomass using diameter at breast-height (DBH) or height alone, or both DBH and height as predictors were significant. The DBH - coarse root biomass models had higher R2 values than the height - coarse root biomass models for all four species, indicating that DBH was a better predictor for coarse root biomass than height. Furthermore, the DBH-height - coarse root biomass models did not have higher R 2 values than the DBH - coarse root biomass models. All but one DBH - coarse root biomass model from the published literature with similar DBH range underestimated or overestimated coarse root biomass using the data from this study. Coarse root biomass allometric equations, therefore, are probably site-specific as above- and below-ground biomass allocation differs with site condition.
机译:我研究了北美北方森林中部和东部地区不同混交种和单种林下细根生物量和坏死的趋势,以确定细根生物量的年细根产量,死亡率以及分解和季节性模式,坏死和土壤剖面内的空间异质性随林分物种组成而变化。我在北美寒带森林中成熟的冷杉冷杉(Abies balsamea L.),云杉(Picea mariana)(密西根州)BSP,班尼松(Pinus bankiana Lamb。)和胡杨(Populus tremuloides Michx)的中部地区进行了根挖掘。开发与身高和身高上的茎直径与粗根生物量相关的异速方程。在第一个细根研究中,tremuloides,P。mariana,Picea glauca(Moench)Voss和A. balsamea(混种林)的林分中,7月和10月的年度细根产量和总细根生物量更高。比相对纯净的P. tremuloides林(单种林)。此外,与单一物种的林分相比,混合物种的林分分别具有较低的水平和较高的垂直细根生物量异质性。在第二个细根研究中,大多数混合采样林分类型(P. bankiana,P。mariana,P。glauca和相比于单一物种(相对纯种的P. bankiana)(针叶林),A。balsamea(混合的针叶树林)和P. bankiana和P. tremuloides(混合木林)的林分。此外,7月,8月和9月混合物种的水平细根生物量异质性低于单物种,但其他采样日期的三种林分类型相似。相比之下,从6月到9月,混合针叶林的垂直细根生物量异质性高于针叶林,而混合木材针叶林与针叶林仅在一个采样日期存在显着差异。在第二个细根研究中,细根生物量,坏死瘤和空间生物量异质性存在明显的时间趋势。细根总生物量呈倒U形模式并带有采样日期(即,夏季最高,而春季和秋季较低),而细根总坏死生物体呈U形模式(即,夏季最低,而在春季较高)。春季和秋季)分别放在所有三种展位类型中。在两种混交林分类型中,水平细根生物量异质性随取样日期呈U形趋势,而垂直细根生物量异质性在针叶树混交林中呈倒U型趋势,在混材林中呈U型趋势。 , 分别。然而,在针叶林中,水平和垂直细根生物量异质性都不随采样日期而变化。两项优良根系研究的结果均支持以下理论:在第一和第二项优良根系研究中,混合树种和混合针叶林林分中的树冠结构和生根性状之间的差异(生态位分化)与养分利用率的增加有关在第二个精细根系研究(促进)中,由混合木材林中的P. tremuloides叶凋落物产生的结果,比单一物种的林地都促进了混合物种林分中细根生物量的更大的土壤空间填充和细根生产力。仅使用胸高(DBH)直径或身高,或DBH和身高作为预测因子,所有粗根生物量的回归均具有显着性。对于所有四个物种,DBH-粗根生物量模型均具有比高度-粗根生物量模型更高的R2值,表明DBH比粗高是更好的粗根生物量预测指标。此外,DBH-高度-粗根生物量模型不具有比DBH-粗根生物量模型更高的R 2值。使用本研究的数据,除了一个DBH以外,所有已发表文献中具有相似DBH范围的粗根生物量模型都被低估或高估了。因此,粗根生物量等速方程可能是特定于地点的,因为地上和地下的生物量分配随地点条件而异。

著录项

  • 作者

    Brassard Brian Wesley;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号