首页> 外文OA文献 >Wavelet Transform Based Classification of Invasive Brain Computer Interface Data
【2h】

Wavelet Transform Based Classification of Invasive Brain Computer Interface Data

机译:基于小波变换的有创脑计算机接口数据分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The input signals of brain computer interfaces may be either electroencephalogram recorded from scalp or electrocorticogram recorded with subdural electrodes. It is very important that the classifiers have the ability for discriminating signals which are recorded in different sessions to make brain computer interfaces practical in use. This paper proposes a method for classifying motor imagery electrocorticogram signals recorded in different sessions. Extracted feature vectors based on wavelet transform were classified by using k-nearest neighbor, support vector machine and linear discriminant analysis algorithms. The proposed method was successfully applied to Data Set I of BCI competition 2005, and achieved a classification accuracy of 94 % on the test data. The performance of the proposed method was confirmed in terms of sensitivity, specificity and Kappa and compared with that of other studies used the same data set. This paper is an extended version of our work that won the Best Paper Award at the 33rd International Conference on Telecommunications and Signal Processing.
机译:脑计算机接口的输入信号可以是头皮记录的脑电图或硬膜下电极记录的脑电图。分类器具有区分在不同会话中记录的信号的能力以使脑计算机接口实用化的能力非常重要。本文提出了一种分类在不同时段记录的运动图像脑电图信号的方法。利用k近邻,支持向量机和线性判别分析算法对基于小波变换的特征向量进行分类。该方法已成功应用于2005年BCI竞赛数据集I,测试数据的分类准确率达到94%。所提方法的灵敏度,特异性和Kappa均得到证实,并与使用相同数据集的其他研究进行了比较。本文是我们工作的扩展版本,在第33届国际电信与信号处理国际会议上获得了最佳论文奖。

著录项

  • 作者

    Aydemir O.; Kayikcioglu T.;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号