首页> 外文OA文献 >Optimizations of Patch Antenna Arrays Using Genetic Algorithms Supported by the Multilevel Fast Multipole Algorithm
【2h】

Optimizations of Patch Antenna Arrays Using Genetic Algorithms Supported by the Multilevel Fast Multipole Algorithm

机译:利用多级快速多极子算法支持的遗传算法优化贴片天线阵列

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present optimizations of patch antenna arrays using genetic algorithms and highly accurate full-wave solutions of the corresponding radiation problems with the multilevel fast multipole algorithm (MLFMA). Arrays of finite extent are analyzed by using MLFMA, which accounts for all mutual couplings between array elements efficiently and accurately. Using the superposition principle, the number of solutions required for the optimization of an array is reduced to the number of array elements, without resorting to any periodicity and similarity assumptions. Based on numerical experiments, genetic optimizations are improved by considering alternative mutation, crossover, and elitism mechanisms. We show that the developed optimization environment based on genetic algorithms and MLFMA provides efficient and effective optimizations of antenna excitations, which cannot be obtained with array-factor approaches, even for relatively simple arrays with identical elements.
机译:我们介绍了使用遗传算法和贴片天线阵列的优化,以及采用多级快速多极算法(MLFMA)的相应辐射问题的高精度全波解决方案。使用MLFMA分析有限范围的数组,该数组有效且准确地说明了数组元素之间的所有相互耦合。使用叠加原理,将阵列优化所需的解决方案数量减少为阵列元素的数量,而无需采用任何周期性和相似性假设。基于数值实验,通过考虑替代突变,交叉和精英机制来改善遗传优化。我们表明,基于遗传算法和MLFMA的已开发优化环境提供了天线激励的高效有效优化,即使对于具有相同元素的相对简单阵列,也无法通过阵列因子方法获得优化。

著录项

  • 作者

    C. Onol O. Ergul;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号